Design of a MPPT System Based on Modified Grey Wolf Optimization Algorithm in Photovoltaic System under Partially Shaded Condition
Abstract
Conventional Maximum Potential Monitoring strategies such as perturbation and observation, incremental conduct, and climbing can effectively monitor the maximum power point in uniform shading, whereas failing in a partially shaded condition. Nevertheless, it is difficult to achieve optimal and reliable power by using photovoltaics. So, to solve this issue, this article proposes to monitor the photovoltaic system's global optimum powerpoint for partial shading with a Modified Gray Wolf Optimizer (MGWO) based maximum power point tracking algorithm. Under partial shadows, a mathematical model of the PV system is built with a single diode, EGWO is used to monitor global maximum power points. A photovoltaic system includes deciding which converter is used to increase photovoltaic power generation. The MPPT architecture uses a modified gray wolf optimization algorithm to quickly track the output power and reduce photovoltaic oscillations. The efficiency of the maximum power tracker is better than the GWO algorithm of up to 0,4 s with the modified gray wolf optimization algorithm. Converters are used to resolve the power losses often occurring in PV systems with a soft-buck converter process. The output of the power generator is greater than the soft-switching buck converter. The simulation and experimental results obtained suggest that both the P & O and IPSO MPPTs are superior to the proposed MPPT algorithm, the proposed algorithm increases the traceability efficiency. The suggested algorithm has the fastest follow-up speed since the α value decreases during the iteration exponentially.
References
. R. Elavarasan et al., "A Comprehensive Review on Renewable Energy Development, Challenges, and Policies of Leading Indian States With an International Perspective", IEEE Access, vol. 8, pp. 74432-74457, 2020.
. A. Debnath, T. Olowu, I. Parvez, M. Dastgir and A. Sarwat, "A Novel Module Independent Straight Line-Based Fast Maximum Power Point Tracking Algorithm for Photovoltaic Systems", Energies, vol. 13, no. 12, p. 3233, 2020.
. T. Zidane, M. Adzman, M. Tajuddin, S. Mat Zali and A. Durusu, "Optimal configuration of photovoltaic power plant using grey wolf optimizer: A comparative analysis considering CdTe and c-Si PV modules", Solar Energy, vol. 188, pp. 247-257, 2019.
. M. Mao, L. Cui, Q. Zhang, K. Guo, L. Zhou and H. Huang, "Classification and summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies", Energy Reports, vol. 6, pp. 1312-1327, 2020.
. G. Petrone, M. Luna, G. La Tona, M. Di Piazza and G. Spagnuolo, "Online Identification of Photovoltaic Source Parameters by Using a Genetic Algorithm", Applied Sciences, vol. 8, no. 1, p. 9, 2017.
. M. Louzazni, A. Khouya, K. Amechnoue, A. Gandelli, M. Mussetta and A. Crăciunescu, "Metaheuristic Algorithm for Photovoltaic Parameters: Comparative Study and Prediction with a Firefly Algorithm", Applied Sciences, vol. 8, no. 3, p. 339, 2018.
. B. Tan, X. Ke, D. Tang and S. Yin, "Improved Perturb and Observation Method Based on Support Vector Regression", Energies, vol. 12, no. 6, p. 1151, 2019.
. U. Chauhan, B. Kumar, A. Rani and V. Singh, "Optimal Perturbation MPPT Technique for Solar PV System using Grey Wolf Optimization," 2019 International Conference on Computing, Power and Communication Technologies (GUCON), NCR New Delhi, India, 2019, pp. 589-592.
. R. Kumar, S. Khandelwal, P. Upadhyay and S. Pulipaka, "Global maximum power point tracking using variable sampling time and p-v curve region shifting technique along with incremental conductance for partially shaded photovoltaic systems", Solar Energy, vol. 189, pp. 151-178, 2019.
. A. Baba, G. Liu and X. Chen, "Classification and Evaluation Review of Maximum Power Point Tracking Methods", Sustainable Futures, vol. 2, p. 100020, 2020.
. H. Mohammed, M. Kumar and R. Gupta, "Bypass diode effect on temperature distribution in crystalline silicon photovoltaic module under partial shading", Solar Energy, vol. 208, pp. 182-194, 2020.
. M. Mohamed, A. Zaki Diab and H. Rezk, "Partial shading mitigation of PV systems via different meta-heuristic techniques", Renewable Energy, vol. 130, pp. 1159-1175, 2019.
. K. Sundareswaran, S. Peddapati and S. Palani, "MPPT of PV Systems Under Partial Shaded Conditions Through a Colony of Flashing Fireflies," in IEEE Transactions on Energy Conversion, vol. 29, no. 2, pp. 463-472, June 2014.
. A. Agbemuko, J. Domínguez-García, E. Prieto-Araujo and O. Gomis-Bellmunt, "Impedance Modelling and Parametric Sensitivity of a VSC-HVDC System: New Insights on Resonances and Interactions", Energies, vol. 11, no. 4, p. 845, 2018.
. S. Mirjalili, S. Mirjalili and A. Lewis, "Grey Wolf Optimizer", Advances in Engineering Software, vol. 69, pp. 46-61, 2014. .
. A. Dolara, F. Grimaccia, M. Mussetta, E. Ogliari and S. Leva, "An Evolutionary-Based MPPT Algorithm for Photovoltaic Systems under Dynamic Partial Shading", Applied Sciences, vol. 8, no. 4, p. 558, 2018.
. A. Eltamaly, M. Al-Saud and A. Abo-Khalil, "Performance Improvement of PV Systems’ Maximum Power Point Tracker Based on a Scanning PSO Particle Strategy", Sustainability, vol. 12, no. 3, p. 1185, 2020.
. H. Lee and J. Yun, "Advanced MPPT Algorithm for Distributed Photovoltaic Systems", Energies, vol. 12, no. 18, p. 3576, 2019.
. M. da Rocha, L. Sampaio and S. da Silva, "Comparative analysis of MPPT algorithms based on Bat algorithm for PV systems under partial shading condition", Sustainable Energy Technologies and Assessments, vol. 40, p. 100761, 2020.
. E. Dupont, R. Koppelaar and H. Jeanmart, "Global available solar energy under physical and energy return on investment constraints", Applied Energy, vol. 257, p. 113968, 2020.
. M. Kermadi, Z. Salam, J. Ahmed and E. Berkouk, "An Effective Hybrid Maximum Power Point Tracker of Photovoltaic Arrays for Complex Partial Shading Conditions", IEEE Transactions on Industrial Electronics, vol. 66, no. 9, pp. 6990-7000, 2019
. E. Mendez, A. Ortiz, P. Ponce, J. Acosta and A. Molina, "Mobile Phone Usage Detection by ANN Trained with a Metaheuristic Algorithm †", Sensors, vol. 19, no. 14, p. 3110, 2019.
. R. Tascioni, L. Cioccolanti, L. Del Zotto and E. Habib, "Numerical Investigation of Pipelines Modeling in Small-Scale Concentrated Solar Combined Heat and Power Plants", Energies, vol. 13, no. 2, p. 429, 2020.
. M. Premkumar and R. Sowmya, "An effective maximum power point tracker for partially shaded solar photovoltaic systems", Energy Reports, vol. 5, pp. 1445-1462, 2019.
. H. Li, D. Yang, W. Su, J. Lu and X. Yu, "An Overall Distribution Particle Swarm Optimization MPPT Algorithm for Photovoltaic System Under Partial Shading", IEEE Transactions on Industrial Electronics, vol. 66, no. 1, pp. 265-275, 2019.
. M. Neethu and R. Senthilkumar, "Soft Computing Based MPPT Controller for Solar Powered Battery Charger Under Partial Shading Conditions," 2019 Fifth International Conference on Electrical Energy Systems (ICEES), Chennai, India, 2019, pp. 1-6.
. S. Ngo and C. -S. Chiu, "Simulation Implementation of MPPT Design under Partial Shading Effect of PV Panels," 2020 International Conference on System Science and Engineering (ICSSE), Kagawa, Japan, 2020, pp. 1-6.
Copyright (c) 2021 International Journal of Computer (IJC)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who submit papers with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- By submitting the processing fee, it is understood that the author has agreed to our terms and conditions which may change from time to time without any notice.
- It should be clear for authors that the Editor In Chief is responsible for the final decision about the submitted papers; have the right to accept\reject any paper. The Editor In Chief will choose any option from the following to review the submitted papers:A. send the paper to two reviewers, if the results were negative by one reviewer and positive by the other one; then the editor may send the paper for third reviewer or he take immediately the final decision by accepting\rejecting the paper. The Editor In Chief will ask the selected reviewers to present the results within 7 working days, if they were unable to complete the review within the agreed period then the editor have the right to resend the papers for new reviewers using the same procedure. If the Editor In Chief was not able to find suitable reviewers for certain papers then he have the right to reject the paper.
- Author will take the responsibility what so ever if any copyright infringement or any other violation of any law is done by publishing the research work by the author
- Before publishing, author must check whether this journal is accepted by his employer, or any authority he intends to submit his research work. we will not be responsible in this matter.
- If at any time, due to any legal reason, if the journal stops accepting manuscripts or could not publish already accepted manuscripts, we will have the right to cancel all or any one of the manuscripts without any compensation or returning back any kind of processing cost.
- The cost covered in the publication fees is only for online publication of a single manuscript.