

103

International Journal of Computer (IJC)

ISSN 2307-4523 (Print & Online)

https://ijcjournal.org/index.php/InternationalJournalOfComputer/index

Optimal Use of Computational Resources when Using

LLM

Sukanya Sahoo
a*

, Prakhar Goel
b

a
Independent Researcher, Bangalore, 560066, India

b
Independent Researcher, Bangalore, 560066, India

a
Email: sukanyasahoo41455@gmail.com

b
Email: goelprakhar2000@gmail.com

Abstract

Large Language Models(LLM) are the machine learning models that are used to understand and generate human

type languages, and also they have proven outstanding performance on a variety of natural language processing

tasks, such as sentiment analysis, text generation, text completion, question-answering, language translations,

etc. LLMs models are based on neural networks, and it uses a technique of pre-training that is used to learn

representations of language, that can be further fine-tuned for specific tasks. There are many ways through

which the computational resources consumed by these models during inference can be optimized. The first

approach is the optimization of the model architecture, where the architecture is modified in such a way that will

reduce the number of parameters, and all the computations required for the inference. There are many more

optimization techniques like quantization, knowledge distillation, onnx conversion, approximation techniques

like low-rank matrix factorization and so on. In this paper we discuss all these approaches and the results gained

from using it.

Keywords: Optimization; Quantization; Pruning; ONNX; Knowledge distillation; Approximation techniques.

1. Introduction

Language models (LMs) are a class of machine learning models that are designed to process and understand

natural language. In recent years, advancements in deep learning have led to the development of large language

models (LLMs), such as BERT (Bidirectional Encoder Representations from Transformers), GPT (Generative

Pre-trained Transformer), etc that have achieved remarkable performance in a wide range of natural language

processing tasks, including language generation, translation, and sentiment analysis. These models generally

consist of billions of parameters that have been trained on a massive amount of text data and produce the

responses like humans.

--

Received: 5/2/2023
Accepted: 6/8/2023

Published: 6/18/2023
--

* Corresponding author.

mailto:example@yahoo.com

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

104

However, the complexity and the size of the model, make it computationally demanding, as it requires a

significant and huge amount of resources for inference and training. Therefore, to optimize the resources

consumed by the LLMs, they should deploy the devices that are resource-constrained, so that it can become

more accessible to a larger audience.

This has led to the development of various techniques, including model architecture optimization, quantization,

pruning, knowledge distillation, approximation techniques, and ONNX conversion, which can reduce the

computational requirements of LLMs without sacrificing much in performance.

Figure 1: Evolution of LLMs throughout the decade [1].

The training of LLMs consists of multiple steps. The model is first trained using an unsupervised technique,

from which they infer the connection between words and concepts. After that, supervised learning is used to

polish it. After passing the training data via a transformer, the LLM can use a self-attention mechanism to

identify connections and linkages. Once the LLM is trained, it can be used as the base for any AI uses. LLM has

the capability for generating text, translating languages, organizing content, rewriting or summarizing content,

and analyzing the sentiment of content like tone or humor. LLMs can be particularly useful as a foundation for

customized uses for both individuals and businesses. They are accurate, fast, flexible, and easy to train. Despite

having too many positive points, there are too many challenges that LLM poses.

● Cost of deployment and development:

● Bias on what data the training is being done on

● AI hallucinations (where responses are not based on the training data)

● Troubleshooting complexity

● Glitch tokens or words or inputs maliciously designed to make the LLM malfunction.

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

105

1.1. Types of LLM

There are many different types of large language models, and each of the models has its own strengths and

weaknesses.

1.1.1. Autoencoder-Based Model

Autoencode-based models learn from the text data that are in a compressed representation. In this method, the

input text is transformed into the lower-dimensional latent space, and then later decodes the latent representation

to recover the same text as it was, i.e., the original text. This full procedure produces the new text using the

compressed representation similar to data compression and decompression.

These models are trained using the concept of unsupervised learning. This model accepts a huge amount of text

input and then later it is trained to identify the underlying patterns in the data. This model further can be utilized

for a bunch of tasks after it is trained, such as text completion, text generation, and classification text.

A lot of advantages are there of the Autoencode model as compared to the conventional language model. First,

by learning more condensed versions of the input data, they can use less computing power during training and

inference. Second, the model is more adaptable because of the compressed representation's application in

downstream tasks like text categorization and sentiment analysis. Finally, autoencoder-based models are

advantageous for text production tasks like dialogue generation and language translation because they can learn

to produce high-quality text.

1.1.2. Sequence-to-Sequence Model

Sequence-to-sequence (Seq2Seq) models are a kind of LLM that can handle variable-length input data

sequences and generate variable-length output data sequences. The encoder receives the input sequence and

creates a fixed-length representation of it, and the decoder receives the fixed-length representation and creates

the output sequence in seq2seq models.

This model aims to pass a fixed length input and to get the fixed length output also, where the length of the input

and output can vary accordingly. Let’s consider one example like if any English text needs to be converted to a

Chinese text, so 6 words input may result in 8 symbols. So, in these cases, we can’t use a normal LSTM network

in order to map each word from a particular English sentence with a Chinese sentence. In order to address these

types of issues, the best model to be used is the Sequence-to-Sequence model.

Some of the applications of the Seq2Seq model are that it is used in machine translations, Speech Recognition,

and Capturing of Videos (to generate the descriptions of movies).

This model consists of 2 things and that are encoder and a decoder. In the form of a hidden state vector, the

encoder records the context of the input sequence and passes it to the decoder, which subsequently creates the

output sequence. Both the encoder and the decoder often use some type of RNNs, LSTMs, GRUs, etc. because

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

106

the task is sequence-based. Although the concealed state vector can be any size, it is typically taken to be a

power of two and a large number (256, 512, or 1024), which can in some ways indicate the complexity of the

entire sequence as well as the domain.

1.1.3. Transformer-Based Models

Transformer-based models are a type of LLM that uses self-attention mechanisms to process sequential data.

Recurrent neural networks (RNNs) are not used by transformers unlike other LLMs to process sequential data,

which makes them easier to parallelize and more efficient. The transformer architecture was introduced in a

seminal paper called "Attention is All You Need" by Vaswani and colleagues in 2017. The main idea behind

transformers is to use self-attention mechanisms to capture long-range dependencies between the tokens in a

sequence. Self-attention allows the model to attend to different parts of the input sequence to compute a fixed-

length representation of the sequence [2]. Transformers consist of an encoder and a decoder, similar to seq2seq

models. The encoder processes the input sequence using self-attention and produces a fixed-length

representation of the sequence. The decoder uses self-attention to attend to different parts of the encoder output

to generate the output sequence. One of the most well-known transformer-based models is the GPT (Generative

Pretrained Transformer) family of models, which was introduced by OpenAI. GPT models can be fine-tuned for

a range of downstream tasks, including language modeling, text categorization, and question-answering, and are

pre-trained on massive amounts of text data.

Compared to other LLMs, transformers have a number of benefits. First off, they are more suited for tasks like

language modeling and text production because they can capture long-range dependencies in the input sequence.

Second, they can be parallelized more easily and effectively than RNN-based models, making them more

scalable to bigger datasets. As a result of their exceptional performance on a number of NLP tasks, they are a

great option for many NLP applications.

1.1.4. Recursive Neural Network Models

A recurrent neural network is a type of neural network that is trained specifically to analyze time-stamped

sequences of data. RNNs are frequently preferable for jobs involving sequential inputs, such as voice and

language. Knowing the terms before a given word in a sentence is crucial if you want to forecast it in an NLP

challenge. Recurrent neural networks (RNNs) are so named because they consistently complete the same task

for every element in a sequence, with the results depending on earlier calculations.

Although the RNN is a straightforward and effective model in theory, it is challenging to train well in practice.

The disappearing gradient and ballooning gradient issues are two of the key causes of this model's unwieldiness.

The gradients during back-propagation during training must travel all the way from the final cell to the first cell.

These gradients' product either reaches zero or grows exponentially. The term "exploding gradients problem"

describes the significant growth in the gradient's norm during training. The converse behavior, the vanishing

gradients problem, prevents the model from learning the connection between temporally far-off events when

long-term components go exponentially quickly to norm zero.

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

107

More advanced RNN models have been developed to address this issue, such as Gated Recurrent Unit (GRU)

networks and Long Short-Term Memory (LSTM). These models use specialized memory cells and gating

mechanisms to handle long-term dependencies better and prevent the vanishing gradient problem.

1.1.5. Hierarchical Models

The hierarchical structure models are the ideal tools that are used for measuring and identifying the structural

relationships that basically fall at multiple levels in the procedure of generating data. These models basically

have no limits to the dimensions of the hierarchy they follow.

These models have the capability to facilitate the testing of the hypothesis for analysis across different levels of

data.

Varieties of NLP tasks use hierarchical models such as machine translations, text classifications, and machine

modeling. They are particularly effective for modeling long sequences of text, where capturing the hierarchical

structure of the language can be critical for accurate predictions. However, hierarchical models can also be more

computationally expensive than simpler models that only consider one level of abstraction, and may require

more training data to learn effectively.

1.2. Where can LLM be used?

In natural language processing (NLP), there is a variety of uses of the Large Language Model (LLM), and some

of those are

1.2.1. Language Generation

To generate the natural language text, like machine translations, dialogue generation, and summarization, LLM

can be widely used.

1.2.2. Language Understanding

To perform language understanding tasks, like classification text, answering the question, and sentiment

analysis, LLM can be widely used for this.

1.2.3. Language Modeling

To perform the tasks such as text segmentation, named entity recognition, or language modeling, it can be

achieved by using LLM which will help to model the patterns and structure of natural language.

1.2.4. Speech Recognition

 To improve the accuracy of the Speech Recognition System, LLM can be used, it is achieved by converting the

audio input to text.

1.2.5. Text-to-speech

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

108

From text input, LLM can help in generating Natural sounding speech.

1.3. How have LLMs changed in recent years?

Large Language Models (LLM) have received a lot of popularity worldwide and also have gained a lot of

appreciation in the field of Natural language processing (NLP). We are now more capable than ever of

describing and explaining an intelligent system with more and better linguistic articulation because of the LLM.

The effectiveness of models like the T5, GPT-3, PaLM, etc. has made this possible. These models can do

exceptionally well tasks such as imitating humans by learning to text generations, to read, and to summarize

long paragraphs, etc.

Let’s have a look at some of the notable examples:

1.3.1. Transformer-based architectures

 The transformer-based architectures do not depend on the convolutions and recurrence in order to generate the

output, they basically use the encoder-decoder-based structure. Here the encoder is responsible to map the

sequence of inputs in order to produce a series of continuous representations.

1.3.2. Pre-training on massive amounts of data

Pre-training is a common technique used in LLMs, where the model is first trained on a large corpus of text data

and then fine-tuned on a specific downstream task. Recent advancements in pre-training techniques, such as

masked language modeling and sequence-to-sequence pre-training, have led to significant improvements in

LLM performance.

1.3.3. Efficient training methods

To train large language models, significant computational resources are required, which can be expensive and

time-consuming. Recent advancements have made it quite possible to train the models at a lower cost and faster,

such as distributed training and parallel training.

1.3.4. Model compression techniques

Model compression aims to provide a model that is more straightforward than the original while maintaining a

high level of accuracy. A model that has been simplified typically has less latency and/or size than the original.

This is advantageous since it frees up memory for other components of the application to use. This can be done

by deploying LLMs more effectively over a wider range of devices by adopting model compression techniques

including quantization, pruning, and knowledge distillation.

1.3.5. Multi-task learning

The model learns numerous tasks concurrently while simultaneously optimizing different loss functions in

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

109

multi-task learning. Instead of training separate models for each task, a single model can learn to execute all of

the tasks simultaneously. The model learns generalized representations of the data that are applicable in a

variety of settings by using all of the data that is accessible across the many tasks.

1.3.6. Transfer learning

Transfer learning is a method that involves using parts of an already-trained model in a fresh one. Generalized

information can be transferred across the two models if they are created to execute comparable tasks. By using

this method, fewer resources and fewer labeled data are needed to train new models. Transfer learning is used to

improve performance on specific downstream tasks, such as text classification, sentiment analysis, etc.

1.3.7. Adversarial training

 If a model needs to be trained to generate resilient outputs to adversarial attacks, then adversarial training is

used. In LLMs, adversarial training has been used to improve the robustness of the model to input sequences

that have been modified to cause errors.

1.3.8. Increase in the Model Size

LLMs have become much more complex in recent years as complex models like GPT-3 contain 175 billion

parameters. This generally allows the models to learn more sophisticated and nuanced representations of the

language.

1.3.9. Improved Task-Specific Models

 Now there are many LLMs now which are task-specific like language translations, text completion, and

question answering. These task-specific models generally require less computational resources than the general-

purpose LLMs, and these models can achieve very high performance on their target tasks.

1.3.10. Ethical Considerations

As LLMs have become more ubiquitous and powerful, there has been a lot of concern about their use and

potential ethical implications, such as the environmental impact on training, running these models, bias in their

outputs, and the impact on the economy and jobs.

2. Reasons behind high usage of computational resources

Some of the major reasons for the high requirements of computational resources by LLMs are as follows:

2.1. Model size

LLMs have many parameters and layers, which can require more computational resources to run during

inference compared to smaller models.

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

110

2.2. Sequence length

The attention mechanism in LLMs does a pairwise similarity computation between all the pairs of positions in

the input sequence. This becomes computationally expensive when LLMs are used to generate long sequences

of text.

2.3. Beam search

LLM beam search is an algorithm for decoding big language models. Finding the most likely group of words

from a set of input tokens is the aim of beam search. The algorithm generates the most likely set of words one

token at a time through an iterative process. As a result, it requires expensive computation, especially for wide

beams.

2.4. Temperature sampling

A hyperparameter that regulates the sampling process's unpredictability is the sampling temperature. The

sampling process is more arbitrary the higher the sampling temperature. We introduce less unpredictability into

the sampling process by lowering the sampling temperature. For high-temperature values, this may need

expensive computational processing.

2.5. Top-k sampling

LLMs may use top-k sampling during inference to limit the number of possible outputs. This technique involves

selecting the k most probable tokens at each step, which can be computationally expensive, especially for large

values of k.

2.6. Ensemble models

LLMs may use ensemble models during inference to improve performance. This involves running multiple

models in parallel and combining their outputs, which can be computationally expensive.

2.7. Hardware limitations

LLMs may require specific hardware, such as GPUs or TPUs, to run efficiently during inference. Applications

that do not have access to specialized hardware, become the limitations of that.

2.8. Attention mechanism

 LLMs often use an attention mechanism to focus on relevant parts of the input sequence during inference. This

mechanism involves computing pairwise similarities between all pairs of positions in the input sequence, which

can be computationally expensive, especially for long sequences.

2.9. Vocabulary size

 LLMs have a large vocabulary size, which can require more computational resources to process during

inference compared to smaller vocabularies.

2.10. Memory constraints

 LLMs may require more memory during inference to store intermediate computations and generated outputs,

especially for long sequences.

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

111

2.11. Batch size

LLMs may require larger batch sizes during inference to achieve optimal performance, which can require more

computational resources.

2.12. Model parallelism

LLMs may require parallelism during inference to distribute the workload across multiple devices or nodes.

This can require additional computational resources and infrastructure.

2.13. Language constraints

LLMs may require additional computational resources during inference to handle language constraints, such as

grammar rules or word order.

2.14. Post-processing

LLMs may require additional computational resources during post-processing to clean up generated outputs,

such as correcting spelling mistakes or removing redundant information.

3. Optimizing the use of computational resources during inference

At the time of inference, the model utilizes a lot of computational resources, so let’s have a look at some of the

ways this utilization of the computational resources can be optimized.

Model architecture optimization Model Architecture plays a vital role in utilizing computational resources. If

the parameters used in the models or the number of layers embedded in the models can be reduced, it can be

done by using more efficient activation functions or using smaller embeddings of the hidden layer. This

approach will help in reducing the computational resources used by LLMs.

Quantization The continuous infinite values are reduced to a more manageable collection of discrete finite

values during the quantization process. Through this, the computation time will become lesser and it will use

lesser memory too. Thus effectively reducing the precision of the model’s parameter.

Pruning Pruning itself says the compression of data, which basically represents that all the unimportant

connections or parameters can be removed from the model.

Knowledge distillation Knowledge Distillation is the process where the knowledge is transferred from the

larger model to a smaller one. So, the smaller model is being trained, which basically is a copy of the behavior

of the larger model.

Quantized fine-tuning In this process, the model is to be trained with lower precision weights and biases, that

basically helps in reducing the time required for computation during inference and also helps in reducing

memory.

Approximation techniques In this process, the models are learned by doing a mapping or creating approximate

functions between the inputs and outputs sequences. In LLM, a low-rank approximation can help in reducing the

time required for computation and memory usage too.

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

112

Hardware optimization The efficiency of large language models can be improved by optimizing the hardware

used by the LLM.

Inference optimization Inference optimization can be accomplished in several ways, including lowering the

length of the sequence, using a reduced beam width during decoding, or employing caching techniques to

prevent some repetitive computations.

Data pre-processing Data preprocessing is a technique that reduces the complexity or amount of the data by

processing the input data as well as the raw data. In this pre-processing, superfluous data from the input data

may be removed.

Augmentation of Data By introducing realistic or random changes to the current database, it aids in the

creation of a new training dataset, which essentially aids in enhancing the effectiveness and results of the

models.

Early stopping Early stopping involves stopping the training process once the validation loss stops improving,

which can reduce training time and computational resources.

Gradient accumulation Gradient accumulation involves accumulating gradients over multiple batches before

updating the model parameters, which can reduce memory usage and allow for larger batch sizes during

training.

Parallelism Using parallelism techniques, such as data or model parallelism, can distribute the computational

workload across multiple devices or nodes, which can significantly reduce training time and improve efficiency.

Knowledge reuse Reusing pre-trained LLMs or leveraging pre-trained language models for transfer learning

can reduce the computational resources required for training new LLMs.

Model compression Model compression techniques, such as using smaller embeddings, quantization, or

pruning, can reduce the size and computational requirements of LLMs without significant loss of performance.

Dynamic evaluation Dynamic evaluation involves using different decoding parameters or techniques during

inference, such as varying the beam width or using dynamic programming, to improve efficiency without

sacrificing performance.

Algorithmic optimization During the training of the model, the number of iterations needed to reach

convergence can be reduced and the memory footprint can be reduced. It will involve techniques like SGD i.e.,

stochastic gradient descent or Adam optimization.

Hardware optimization While training and inference the hardware used can be optimized by selecting the most

suitable one. So basically right GPU selection or using good specialized hardware like TPUs i.e., Tensor

processing units

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

113

3.1 Model Architecture Optimization

The computational resources used by LLMs can also be modified by using Model Architecture Technique. The

structure of the model is being changed in this technique to make it more faster and efficient during inference.

The parameters of the models are being reduced in this technique, without actually affecting the performance of

the model.

One of the most popular model architecture techniques is to reduce the number of model layers. The only goal is

to strike a balance between model capacity and performance, allowing for a reduction in the number of layers

without compromising the model's potential to produce high-quality outputs and learn.

Skip connections are yet another method for improving LLM's architectural design. In addition to learning from

the preceding layer, this enables the model to have direct access to the input layers. This technique helps the

model to reduce the number of layers and maintain its performance.

One such strategy for model architecture that enables the model to learn from the discrepancies between the

input and output is the usage of residual connections. The quantity of calculations needed to perform

convolutions is decreased by using depth-wise separable convolution.

Several methods for LLM architecture optimization:

Depth reduction: If the depth in the LLM architecture is reduced, the model's processing needs are also

reduced, along with the number of parameters. However, the model's performance is unaffected by depth

reduction.

Width reduction By decreasing the number of hidden units in each layer can reduce the width of the LLM

architecture. It helps in reducing the computational requirements and the number of parameters of the model.

Embedding dimension reduction Computational requirements of the LLM can also be reduced by reducing the

dimensionality of the input embeddings

Dropout Dropout is a regularization technique. During training the models, dropout randomly drops out some

of the neurons from it, to prevent overfitting.

Dilated convolutions It helps in increasing the receptive field of the model without increasing any

computational requirements or without increasing any number of parameters. Dilated convolutions is a type of

convolutions layer.

Grouped convolutions Here, the input channel is being divided into groups, and then applying the convolution

mechanism separately to every single group.

Factorized convolutions Here the convolutional kernels are decomposed into smaller sub-kernels that generally

reduce the number of parameters and also the computational requirements.

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

114

Low-rank factorization Here the weight matrices of the LLM architecture are converted into low-rank matrices

by decomposing, which reduces the computational requirements of the model.

Attention head reduction If the attention heads are being reduced in the LLM architecture, then the number of

parameters is also being reduced.

Transformer architecture modifications The original Transformer architecture can be modified to reduce

computational requirements. For example, using a reversible encoder or performing attention over a smaller

window size can reduce the number of computations.

3.2 Quantization

By quantization technique, the memory and the computational resources that are being used to store and run the

Large Language Model are being reduced. It works by reducing the precisions of the model’s parameters.

Usually, every single parameter is represented by either a 16-bit, 32-bit, or 64-bit value, which needs

significantly high computational resources and memory to store and process. These parameters can be reduced

in terms of precision with fewer bits, like 8 bits or even less [10]. Doing this would reduce the computational

and memory requirement of the LLM. Moreover, it allows the LLM to run on less powerful hardware or to run

more efficiently on more powerful hardware.

Some of the methods to quantize a model include

Post-training quantization Using full precision floating point numbers, the quantization of the model's

parameter is being done. The models have to be retrained to minimize the loss caused by the quantization as the

parameters are quantized to a lower bit precision [12].

Quantization-aware training In quantization-aware training, the forward pass models low precision behavior

while the backward pass is left unchanged. Due to the quantization error this causes, which adds to the model's

overall loss, the optimizer makes an effort to lower it by modifying the parameters. This increases the

quantization resistance of our parameters, making our procedure nearly lossless.

Dynamic quantization In this method, the activations are dynamically quantized while the weights are

quantized beforehand. The run-time overhead of dynamic quantization comes from quantizing activations as

they happen. Therefore, this is advantageous for scenarios where memory bandwidth rather than compute

(where the overhead will be introduced) dominates the model execution time. For LSTM and Transformer type

models, this is accurate.

For reducing the computational requirements and the memory of the LLMs, quantization is an effective

technique for that, as it makes them more efficient to run on varieties of hardware. But the drawback is that

quantization may result in a loss of accuracy when compared to full-precision models. So, it becomes of utmost

importance to evaluate carefully between accuracy and memory when using quantization.

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

115

Here are the steps for performing model quantization:

Choose the precision Choosing the correct precision can happen by determining the target precision for the

activations and the model weights. The basic precisions include 4-bit, 8-bit, or even binary weights.

Train the model LLM model should be trained using the full precision technique as usual.

Quantize the model By using low-precision data types, such as 8-bit integers instead of the more common 32-

bit floating point, to represent the weights and activations, a technique known as quantization can lower the

computational and memory costs associated with conducting inference. This makes operations like matrix

multiplication much faster with integer arithmetic.

Calibration Calibration data is used to collect the dynamic ranges of the weights, biases, and activation in the

convolution and fully connected layers of the network. Doing this helps in determining the scaling factor that is

used to represent the weight and activation at the chosen precision.

Fine-tuning The accuracy loss during quantization is restored by fin-tuning the model again on the training

dataset using the weights and activations at full precision.

Validation The quantized model is then validated with a completely different test set to measure the model

performance.

Table 1: Accuracy performance after quantization [5].

Model FP32

INT8 (w/o

SmoothQu

ant)

INT8 (WI

SmoothQuant) INT8 (WI SmoothQuant auto-tuning)

bigscience/bloom-560m 65.20% 63.44%

66.48%

(alpha=0.5)

64.76% (alpha: 95.9% over 0.6, 4.1%

in [0.4,0.6])

bigscience/bloom-Ib7 71.43% 67.78%

72.56%

(alpha=0.5)

72.58% (alpha: 55.1% over 0.6, 30.6%

in [0.4, 0.6], 14.3% under 0.4)

bigscience/bIoom-3b 73.97% 69.99%

74.02%

(alpha=0.5) 74.16% (alpha: 100% over 0.6)

bigscience/bIoom-7b1 77.44% 75.46% 77.02%(alpha=0.5)

77.45% (alpha: 91.8% over 0.6, 4.9%

in [0.4, 0.6], 3.3% under 0.4)

bigscience/bIoom-176b 84.17% 82.13%

83.52%

(alpha=0.6) -

facebook/opt-125m 63.89% 63.48%

63.44%

(alpha=0.5)

64.14% (alpha: 59.4% over 0.6, 8.1%

in [0.4, 0.6], 32.4% under 0.4)

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

116

facebook/opt-1.3b 75.41% 73.59%

70.94%

(alpha=0.5)

74.80% (alpha: 69.9% over 0.6, 24.7%

in [0.4, 0.6], 5.5% under 0.4)

facebook/opt-2.7b 77.79% 78.57% 78.60%(alpha=0.5)

78.25% (alpha: 73.2% over 0.6, 21.6%

in [0.4, 0.6], 5.2% under 0.4)

facebook/opt-6.7b 81.26% 76.65% 81.58%(alpha=0.5)

81.39% (alpha: 68.0% over 0.6, 26.8%

in [0.4, 0.6], 5.2% under 0.4)

EleutherAl/gpt-j-6B 79.17% 78.82% 78.84%(alpha=0.6)

79.29% (alpha: 96.4% over 0.6, 3.6%

in [0.4, 0.6])

3.3 Pruning

In the pruning technique all the less important parameters are removed from the neural network. This helps in

reducing the model size and the computational requirements [3]. Pruning makes the model capable of running

on resource constraint hardware or training large models with the same resources.

Weight pruning Weight pruning is responsible for identifying and removing the smallest connections of

weights in the LLM. This is done by either removing the small weights entirely or setting the values of small

weights to zero.

Neuron pruning The neurons which are least important for predictions are removed by using neuron pruning.

Finding the least significant neurons in an LLM may depend in part on the neurons' activity values or gradients

during training. Structured pruning: In this technique, the entire structure—for example, the complete filter layer

from a convolutional layer—or a collection of parameters from the LLM are deleted [4].

A procedure called pruning can be applied in one of two ways: either during training or after training. Pruning is

used in conjunction with regularization approaches during training to help the model learn more quickly and

effectively while retaining key parameters [9]. After training, the pruning strategy can be used to eliminate some

of the elements that are less crucial for perfect predictions with improved accuracy.

Pruning is a useful approach that reduces the amount of computing power needed to run and store LLMs; yet, it

has the potential to reduce accuracy when compared to unpruned models. The evaluation should be taken

carefully for the trade-off between the resource requirements and the accuracy that is necessary when using the

pruning technique.

Here are the steps for performing pruning:

Train the model LLM model should be trained with full precision technique, as usual.

Determine the importance of weights or neurons The importance of each neuron and the weights in this

model should be calculated using this technique. like structure pruning, weight magnitude, sensitivity-based

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

117

pruning, or pruning. This way the least important neurons or weights can be removed without significant loss in

accuracy.

Remove unimportant weights or neurons This is accomplished by making the network sparse and setting the

least important parameters to zero. By doing this, the model's parameters would be reduced yet the architecture

would remain unchanged. It is also possible to accomplish this by eliminating the entire node from the network,

which would result in a reduced network architecture while still preserving the accuracy of the original larger

network.

Fine-tuning To restore the accuracy that is lost during pruning the model is fine-tuned again using the

remaining neurons and the weights, while parallelly fixing the pruned weights or neurons [6].

Validation Finally, at last, the pruned model needs to be validated on a validation dataset to ensure that the

accuracy is maintained.

From Figure 2 we see the F1 of the full set of pruned networks against the speedup, we can see that it

outperforms fine-tuned Tiny BERT and Distilbert by some margin. Even without the optimization version

shown here, which lacks the LayerNorm optimization used in the much quicker version of MobileBERT,

MobileBert appears to be significantly better.

Figure 2: F1 against speedup for BERT-based models [7, 8].

Even in terms of saved size, we get smaller networks for the same accuracy, except for MobileBERT, which is

better in size too.

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

118

Figure 3: F1 against fill rate for BERT-based models [7, 8].

3.4 Knowledge Distillation

The knowledge distillation technique trains the model in a smaller, basically, a “student” model that helps to

mimic the behavior of the larger or a “teacher” model. The teacher model is typically larger and is more

accurate LLM as it has been pre-trained on the larger dataset, whereas the student model is typically a smaller

model that is being trained to replicate the behavior of the teacher model. Knowledge distillation is the best

technique that is being used to reduce the computational resources required to run and store the LLM (large

language model)

During training the soft targets are provided to the teacher model, which guides the training of the student model

[11]. The soft targets represent the set of probabilities for confidence in the predictions from the teacher’s

model. After that, the student model is trained to predict the same probabilities as that of the teacher model. In

this, the correct labels or the hard targets are being used in traditional training.

Soft targets provide a lot of additional information to the student model that is not present in the hard targets.

This allows the student's model to learn more effectively and efficiently. Student models can easily learn to

replicate the behavior of the teacher models using very few parameters, this is achieved by using the soft targets.

It helps widely in reducing the computational resources required to run and store the model.

Other techniques such as quantization and the pruning technique can combine with Knowledge distillation to

reduce the computational resources that are required to run and store the LLM. The student model is less

accurate as compared to the teacher's model, as it may not achieve that level of accuracy. Therefore, the tradeoff

should be done very carefully between the computational resources and the accuracy while using knowledge

distillation.

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

119

Here are the steps for performing knowledge distillation:

Train the teacher model The larger model should be trained first, which is referred to as a teacher model, it

should be trained using full precision technique, as usual.

Generate soft targets Soft targets are generated by the teacher model, that is the probability distribution over

the classes, and are being used as the subset of the training data.

Train the student model Now the simpler and the smaller LLM to be trained is generally referred to as a

student model. That is used to mimic the behavior of the larger model which is the teacher model. The student

model has been trained in such a manner that the output is similar to probability distributions to the soft targets

that are generated by the teacher model.

Fine-tuning After the student model is trained using the soft targets, the fine-tuning should be done using the

actual training data, it is just to ensure that the accuracy of the model is not at all compromised.

Validation Finally, at last, the student model on a validation dataset had to be validated to ensure that the

accuracy is maintained.

3.5 Approximation Techniques

It is possible to approximate the original LLM with a simpler, smaller, and more computationally efficient

model, without compromising the accuracy of the model. This is done by Approximation Techniques.

Approximation techniques in LLM (large language models) generally refer to a family of methods that aim to

reduce the computational resources that are required to run and store an LLM, without compromising its

accuracy.

There are varieties of approximation techniques, some of which are listed below:

Compression-based methods The LLM model can be compressed by lowering the size of its embeddings and

its parameters by using techniques like quantization, pruning, and knowledge distillation.

Low-rank approximation The model parameter count can be lowered by approximating the weight matrices of

the LLM. This method improves the memory and processing efficiency.

Factorization-based methods In this method, the model parameters are reduced by factorizing the weight

matrices of the LLM into smaller matrices. Hence, it would require less computational power to run the model.

Parameter sharing This method allows for a reduction in the number of parameters and the resources needed

for computation by sharing the parameters among various LLM components.

Tensor train decomposition In this method, the weight tensors of the LLM model are decomposed into a series

of smaller tensor cores, which further can be computed with fewer parameters or independently.

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

120

Weight sharing In this technique, the weight of the LLM model is shared across different positions or layers in

the input sequence, thus helping in reducing the number of parameters required in the LLM.

Knowledge distillation In this technique, the smaller and more computationally efficient LLM model is trained

by using the predictions of a larger and more accurate LLM model as targets during training.

Approximation techniques are one of the techniques that help in reducing the computational resources required

to run and store LLMs, thus it becomes possible to train the larger models or to run the heavy models on less

powerful hardware. One of the drawbacks is that there will be a significant loss in accuracy as compared to the

original.

3.6 Conversion to ONNX

ONNX is designed in such a manner that they are software and hardware agnostic, which means it can be run on

a variety of platforms and devices that includes GPUs, CPUs, and specialized accelerators like ASICs and

FPGAs. Converting LLM (large language model) to the ONNX format helps in reducing the use of resources

used in computation by enabling the model that can run efficiently on different software and hardware

platforms. The accessibility of the hardware-specific optimizations, which are not available in other forms, is

one benefit of converting LLM to ONNX format. For example, Some hardware accelerators may support

specialized operations or data types that can improve the performance of different types of models. Without

having to rewrite the model code, these benefits can be obtained using the ONNX approach. Additionally, The

models in ONNX are typically more compact as compared to other formats, which can help in reducing the

amount of storage and memory required to run and store the model.

4. Conclusion

Using the model optimization techniques, it is possible to leverage the capabilities of LLM in a resource-

constraint environment. Quantization in most of the cases reduced the model size by atleast half. It achieves a

compression ratio of atleast 50% with only a minimal impact on the performance of the LLM. Converting the

quantized model to ONNX made the inference time almost 1.5 times faster, enabling efficient execution across

different hardware platforms. Pruning reduces the computational requirements of large language models,

resulting in faster inference without significant loss in accuracy. Knowledge distillation illustrates that it can

reduce the computational demands of LLM, while maintaining comparable performance to the teacher model.

Model architecture optimization techniques, such as efficient attention mechanisms and parameter sharing,

improved computational efficiency without sacrificing model performance.

However, there are a few limitations as too much of the model can be optimized. There is a trade-off between

model size reduction and maintaining desirable performance, as techniques like quantization or pruning may

lead to accuracy degradation if not calibrated properly. Additionally, certain optimization methods can increase

model complexity, making interpretation and explainability more challenging. Ensuring models generalize well

to diverse data and exhibit robustness is an ongoing concern. Ethical considerations, including biases and

fairness, must be taken into account throughout the optimization process. Overcoming these limitations demands

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

121

continuous research, collaboration, and a comprehensive approach that addresses computational, data,

interpretability, generalization, and ethical aspects.

5. Future of LLM

After the release of ChatGpt in 2022, people’s interest are increasing a lot towards LLM. A lot of industries

have been transformed a lot by LLM, because of the ability of LLM, such as generation of human text, and

addressing a variety of applications. Due to the massive quantity of data that LLM has been trained on, its

present performance is impressive and they have significantly altered the way that natural language processing

behaves.

Because of how well LLM performs on a variety of tasks, including text summarization, question answering,

code generation, emotion analysis, translation, etc., it has recently attracted a lot of interest. LLMs have shown

an impact in different fields. Here are some examples:

● Advancement of Healthcare: Large language model has impacted the healthcare industry a lot by

providing personalized human-centric care, and also by promoting patient adherence and engagement.

It can also help in analyzing the patient data as well as the medical record.

● Enhancement of Customer Service: Large Language models can help in generating a good analysis

of the feedback received from the customers, and can also help in improving the overall experience of

the customers.

● Improving Education: Large language models can help in providing a proper structure for

discussions, personalized guidance to the students at the time of discussions, and also in generating

real-time feedback. Overall, this will help in improving the engagement and participation of the

students.

● Enhancement in Business Operations: As amazing insights and analytics can be generated by the

large language model from the feedback provided by the customer, it helps the business to take proper

decisions at the correct time.

● Advancement of scientific research: It can help in suggesting better experiments and also helps in

generating the correct hypothesis, also can be used in analyzing different kinds of patterns, analyzing

the scientific data.

● Focus on Ethical Issues and Social Impact: LLM programmes may place a higher emphasis on

ethical issues and social impact in an era of rising social consciousness and emphasis on corporate

social responsibility. As the legal profession and society's interests and values change, courses on legal

ethics, sustainability, human rights, and social justice may become increasingly prevalent.

Acknowledgments

We would like to extend our sincere gratitude to each and everyone who has made a contribution to the field of

Machine Learning and Artificial Intelligence. Their diligence and commitment considerably improved the

study’s findings.

International Journal of Computer (IJC) - Volume 48, No 1, pp 103-122

122

References

[1] Nina Shenker-Tauris, “Do Large Language Models (LLMs) reason?”. Internet:

https://www.shaped.ai/blog/do-large-language-models-llms-reason, Feb. 2023.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, et al.,

“Attention is All You Need”, arXiv arXiv:1706.03762, Jun. 2017.

[3] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, John Guttag. “What is the state of neural

network pruning?.” arXiv preprint arXiv:2003.03033, Mar. 2020.

[4] Han, Song, et al. “Learning both weights and connections for efficient neural networks.” arXiv

arXiv:1506.02626, 2015.

[5] Xinhe, Chen Suyue, et al. “Neural Compressor”. Internet: https://github.com/intel/neural-

compressor/blob/master/docs/source/smooth_quant.md, Mar. 29, 2023.

[6] Molchanov, Pavlo, et al. “Pruning convolutional neural networks for resource efficient inference.”

arXiv preprint arXiv:1611.06440, 2016.

[7] Babaeizadeh, Mohammad, Paris Smaragdis, and Roy H. Campbell. “Noiseout: A simple way to prune

neural networks.” arXiv preprint arXiv:1611.06211, 2016.

[8] François Lagunas, Ella Charlaix, “NN pruning”. Internet: https://github.com/huggingface/nn_pruning,

Aug. 30, 2021.

[9] Elias Frantar, Dan Alistarh, “SparseGPT: Massive Language Models Can be Accurately Pruned in One-

Shot” arxiv:2301.00774, 2023

[10] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, Dan Alistarh, “OPTQ: Accurate Quantization for

Generative Pre-trained Transformers”, ICLR 2023 poster, 2023

[11] Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,

Ranjay Krishna, et al. “Distilling Step-by-Step! Outperforming Larger Language Models with Less

Training Data and Smaller Model Sizes”, arXiv arXiv:2305.02301, May 2023.

[12] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, Dan Alistarh, “GPTQ: Accurate Post-Training

Quantization for Generative Pre-trained Transformers”, arXiv arXiv:2210.17323, Oct. 2022.

https://www.shaped.ai/blog/do-large-language-models-llms-reason
https://arxiv.org/search/cs?searchtype=author&query=Vaswani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Shazeer%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Parmar%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Uszkoreit%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Jones%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Gomez%2C+A+N
https://github.com/huggingface/nn_pruning/commit/0cef2b2435d575f141feb12885f632b173df8f93
https://arxiv.org/abs/1611.06440
https://arxiv.org/abs/1611.06211
https://arxiv.org/abs/1611.06211
https://github.com/madlag
https://github.com/echarlaix
https://github.com/huggingface/nn_pruning
https://github.com/huggingface/nn_pruning
https://github.com/huggingface/nn_pruning/commit/0cef2b2435d575f141feb12885f632b173df8f93
https://github.com/huggingface/nn_pruning/commit/0cef2b2435d575f141feb12885f632b173df8f93
https://openreview.net/profile?id=~Elias_Frantar1
https://openreview.net/profile?id=~Saleh_Ashkboos2
https://openreview.net/profile?id=~Torsten_Hoefler1
https://openreview.net/profile?id=~Dan_Alistarh7
https://arxiv.org/search/cs?searchtype=author&query=Hsieh%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Li%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Yeh%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Nakhost%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Fujii%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Ratner%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Krishna%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Frantar%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Ashkboos%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Hoefler%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Alistarh%2C+D

