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Abstract 

Communities are usually groups of vertices which have higher probability of being connected to each other than 

to members of other groups. Community detection in complex networks is one of the most popular topics in 

social network analysis. While in real networks, a person can be overlapped in multiple communities such as 

family, friends and colleagues, so overlapping community detection attracts   more and more attention.  

Detecting communities from the local structural information of a small number of seed nodes is the successful 

methods for overlapping community detection. In this work, we propose an overlapping community detection 

algorithm using local seed expansion approach. Our local seed expansion algorithm selects the nodes with the 

highest degree as seed nodes and then locally expand these seeds with their entire vertex neighborhood into 

overlapping communities using Personalized PageRank algorithm. We use F1_score( node  level detection )  

and NMI( community level detection ) measures to assess the performances of the proposed algorithm by 

comparing the proposed algorithm‟s detected communities with ground_truth communities on many real_world 

networks. Experimental results show that our algorithm outperforms over other overlapping community 

detection methods in terms of accuracy and quality of overlapped communities. 
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1. Introduction 

Finding of the cohesive groups, cliques and communities inside a  complex network is one of the most studied 

topics in social networks analysis. It has attracted many researchers in sociology, biology, computer science, 

physics, criminology, and so on. Community detection aims at finding clusters as subgraphs within a given 

network. A community is a cluster where many edges link nodes within cluster but few edges link nodes 

between different clusters.  
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In recent decades, community detection has found applications in many fields, such as complex network 

analysis [1], relation prediction [2], node identification [3], etc. In recent years, many community detection 

algorithms have been developed for various fields. In reality, there are many different kinds of communities in 

real-world networks : disjoint or nonoverlapping (e.g., students belonging to different disciplines in an institute) 

[4], overlapping (e.g., people in social network always belong to several group ,simultaneously, such as family, 

friends and colleagues) [5, 6], hierarchical (e.g., cells in the human body form tissues that in turn form organs 

and so on) [7], and local (e.g., a person having uneven interaction between certain members within a social 

group in Facebook) [8].  Disjoint community detection algorithms are partitional clustering, hierarchical 

clustering, spectral clustering, graph partitioning, genetic algorithms and random walks. Overlapping 

community detections are local expand   and optimization, clique percolation method( CPM ), link graph and 

link partitioning , agent based and dynamical algorithms, fuzzy detections, statistical inference based methods 

and non_negative matrix factorization( NMF ) methods. In this paper, we propose an overlapped community 

detection algorithms based on see d expansion approach.   The paper is organized as follows: Section 2, briefly 

outlines a list of related works. Detailed steps of the proposed method are presented in Section 3. Section 4, 

presents the experimental results, and comparison with state_of_art algorithms. Finally, this paper is concluded 

in Section 5. 

2. Related Works 

The problem of community detection in complex networks is an important research topic, and an impressive 

number of works in this field have been proposed. For overlapping community detection, there are many 

different approaches [6] including clique percolation, line graph partitioning, eigenvector methods, ego network 

analysis. The clique percolation method builds up the communities from k-cliques, which correspond to 

complete (fully connected) sub-graphs of k nodes. (E.g., a k-clique at k = 3 is equivalent to a triangle) [9]. 

According to our experiment, we can find out that the value of k  appropriate for small scale networks (e.g. 

Karate) at k=3. Line graph partitioning is also known as link communities. Given a graph G= (V, E), the line 

graph of L (G) (also called the dual graph) has a vertex for each edge in G and an edge whenever two edges (in 

G) share a vertex. For instance, the line graph of a star is a clique. A partitioning of the line graph induces an 

overlapping clustering in the original graph [24]. Even though these clique percolation and line graph 

partitioning methods are known to be useful for finding meaningful overlapping structures, these methods often 

fail to scale to large networks like those we consider.  Eigenvector methods generalize spectral methods and use 

a soft clustering scheme applied to eigenvectors of the normalized Laplacian or modularity matrix in order to 

estimate communities [11]. Ego network analysis methods use the theory of structural holes [12], and compute 

and combine many communities through manipulating ego networks [13,14]. There are many different 

community detection methods. However, some of these methods cannot have the ability to detect overlapping 

communities and to handle large real_world networks with reasonably computational cost. In addition, the 

community structure may be different to discover at the global level since the network organization at large 

scale would become very complex. The problem of community detection in large real networks is thus a 

challenging one, and the exploration of local view methods represents one of the alternatives in addressing this 

problem [6]. There have been a few local view methods for community detection [14,15,16]. Most of them 

apply one type of local community detection algorithm to expand the selected seeds. The local community 

https://en.wikipedia.org/wiki/Clique_(graph_theory)
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detection algorithms usually start from the given seed and then expand by iteratively adding the neighbor node 

which contributes most to a specific score function (Modularity, Compactness-Isolation, etc…), until the score 

stops improving. The techniques based on approximate personalized PageRank are shown to be very effective 

for finding local communities [17,18]. In these techniques, an approximate personalized PageRank vector based 

on random walks from a seed is computed first, and the local community is then generated by performing a 

sweep over the PageRank vector using conductance or other community criteria.  Gleich and Seshadhr propose 

using the nodes with local minimal conductance in their egonets as seeds [19], while Chen et.al. propose using 

nodes with local maximal degree in egonets as seeds[4]; Whang and his colleagues take the center of each 

cluster generated by Graclus [20] as a seed [16]. Moradi and his colleagues apply link prediction techniques to 

calculate the similarity of connected nodes and choose the nodes which are very similar to their neighbors as 

seeds, and then they further enhance this seed selection by applying a graph coloring algorithm [15]. In this 

paper, we propose an overlapping seed expansion algorithm to find out the best seeds and subsequently the best 

seeds from the proposed algorithm will be used to find out the communities hidden in the network. Experiments 

show that our seeding algorithm leads to an improvement on coverage and quality of the generated community 

structure, and is competitive in overlapping community detection. 

3. Overview of the Proposed Method 

We introduce our overlapping community detection algorithm , which consists of four phases: (1) find disjoint 

community (2) find core seed from each disjoint community (3) expand core seed nodes (4) calculate minimum 

conductance. The flow-graph of the proposed algorithm is shown in figure 1 based on the seed expansion 

strategy. 

 

Figure 1: The flow-graph of the proposed algorithm 

3.1. Find disjoint community 

One way to achieve these goals is to apply a high quality and fast graph partitioning scheme (disjoint clustering 

of nodes in a graph) in order to compute a collection of sets with fairly small conductance. In this phase, we use 
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the Louvain method to find disjoint cluster. It processes a network edge by edge in the order that the network is 

fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, 

and does not need to re-compute the whole network. Therefore, it can efficiently process large networks in real 

time. Our algorithm optimizes expected modularity instead of modularity at each step to avoid poor 

performance [21]. 

3.2. Find community core seeds 

The selection of a seed node or a seed set is really important in the algorithms which use seeds to find out 

communities. Centrality analysis is one of the major research direction in social network analysis. The intuition 

behind centrality analysis is to discover group of central nodes from where maximum influence can be 

propagated in the network. Computation in detecting community can be minimized if central nodes can be 

identified at initial phase. Central node plays an important role in social relationships and community evolution. 

The person who has higher number of relationships seems to be an important person. Communities can be 

identified based on the set of central node in the network. Degree centrality, betweenness centrality, eigenvalue 

centrality and closeness centrality are some of the measures used to find out the central nodes in social network. 

Degree centrality is the most common feature from where community evolution is carried out.  In this phase, we 

use degree centrality to find out community core nodes. Firstly, we find degree centralities on all nodes in each 

disjoint community. And then we sort nodes in descending order for each disjoint community. From each 

disjoint cluster, we pick the highest degree node and then select these nodes with its neighbor as seed nodes.  

Degree centrality of a node is defined as the number of edges incident upon it. In a directed network, there are 

two measures of degree centrality namely in-degree and out-degree. In-degree of vertex „v‟ corresponds to the 

number of edges directed into a vertex „v‟. Out-degree of vertex „v‟ corresponds to the number of edges that are 

outward from the vertex „v‟. Mathematically, degree centrality of a vertex „v‟ of a graph G = (V, E) is denoted 

as DC (v), which is equal to degree of node „v‟. The degree centrality of the network is defined by the following 

equation: [22] 

     
∑        
 
   

(   )(   )
 (1) 

where DCN and Dmax are the degree centrality and maximum degree of the network respectively. 

3.3. Expand seed nodes 

Once we have a set of seed vertices, we wish to expand the clusters around those seeds. An effective technique 

for this task is using a personalized PageRank vector , also known as a random-walk with restart. A personalized 

PageRank vector is the stationary distribution of a random walk that, with probability α follows a step of a 

random walk and with probability (1-α) jumps back to a seed node. If there are multiple seed nodes, then the 

choice is usually uniformly random. Thus, nodes close by the seed are more likely to be visited. The main 

advantages of random walk-based techniques are that they can be computed locally and in parallel, the time and 

space requirements of such algorithms do not depend on the size of the network [23], and the communities 

identified by these types of algorithms are structurally close to real-world communities. In personalized 
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PageRank algorithm, there are two parameters (ε,α). We set α =0.99 for an undirected graph. This value yields 

results that are similar to those without damping. The parameter   ε is an accuracy parameter. After expanding 

seed nodes, we get the set of nods. And then we get the final community from these set of nodes with minimum 

conductance score. Conductance is one of the most important cut-based measure. The conductance of a cluster 

(a set of vertices) measures the probability that a one-step random walk starting in that cluster leaves that 

cluster. The conductance of a cluster is defined to be the cut divided by the least number of edges incident on 

either set Ci or V\Ci: 

    (  )   
   (  )

    (     (    )      (      ))
 (2) 

4. Experimental Results  

In order to quantitatively test our algorithm, we test it on  real-world networks. We compare our algorithm with 

other state-of-the-art overlapping community detection methods: LFM [24] and CPM[9]. We demonstrate that 

our proposed algorithm‟ ability to detect meaningful overlapping communities in the real-world networks. The 

network datasets include: Zachary‟s karate club, American college football network, RiskMap Network, 

Dolphins‟ social network, Strike network.  Some descriptions are given in Table I. There are many methods to 

measure the quality of detected communities. But only a few measures are suitable for overlapping 

communities. In our study, we introduce well-known evaluation criteria to measure the performance of the 

applied algorithms, Average (F1-score)[25]. 

    
                  

                
 (3) 

The statistics of the performance of the proposed algorithm, CPM, LFM algorithms for these real-world 

networks is collected in Table 2, Table 3, Table 4.  

Table 1: Real World Networks 

Network Node Edge Description 

Karate 34 78 Zachary‟s karate club 

Dolphins 62 160 Dolphin social network 

Football 115 613 American football 

Strike 24 38 Strike social network 

RiskMap 42 83 RiskMap network 
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Table 2:  F1-score for the proposed algorithm on Real-world Networks 

Networks Ground_Truth 

communities 

Identified 

Communities 

Ground_Truth 

Matched 

Node 

Coverage 

Proposed 

method 

 

Karate 2 4 1 1 0.265  

Dolphins 4 5 1 0.667 0.512  

Football 12 9 0.750 0.870 0.569  

Strike 3 4 1 0.791 0.446  

RiskMap 6 7 1 0.881 0.686  

Table 3:  F1-score for the CPM algorithm on Real-world Networks. 

Networks Ground_Truth 

communities 

Identified 

Communities 

Ground_Truth 

Matched 

Node 

Coverage 

CPM 

method 

 

Karate 2 3 1 0.941 0.320  

Dolphins 4 4 0.750 0.730 0.322  

Football 12 4 0.333 0.870 0.162  

Strike 3 6 1 0.791 0.261  

RiskMap 6 4 0.667 0.905 0.552  

Table 4:  F1-score for the LFM algorithm on Real-world Networks. 

Networks Ground_Truth 

communities 

Identified 

Communities 

Ground_Truth 

Matched 

Node 

Coverage 

LFM 

method 

 

Karate 2 2 1 1 0.85  

Dolphins 4 5 1 0.667 0.186  

Football 12 9 0.750 0.870 0.605  

Strike 3 3 1 1 0.983  

RiskMap 6 5 1 0.857 0.832  

5. Conclusion and Recommendations 

The local seed expansion algorithm is proposed in this paper. The algorithm firstly  partition the input network 

graph into disjoint communities by using Louvain algorithm and then from each disjoint community, select seed 

nodes which have the highest degree centrality , then expand these seed nodes into overlapping communities  

using Personalized PageRank. The proposed method is compared with other overlapping community mining 

algorithms in this paper. Experimental results compared with the existing prominent algorithms over different 

types of large real networks show that the proposed seed expansion algorithm is relatively insensitive to the 

keeping rate of support and is competitive in overlapping community detection. In this paper, we test our 

proposed algorithm on only small scale real world networks to measure the performance of the detected 

community and we can compare only two another algorithms. 
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