

57

International Journal of Computer (IJC)

ISSN 2307-4523 (Print & Online)

© Global Society of Scientific Research and Researchers

http://ijcjournal.org/

Burst Loss Reduction Using Fuzzy-Based Adaptive Burst

Length Assembly Technique for Optical Burst Switched

Networks

Abubakar Muhammad Umaru*

Yusuf Maitama Sule University, Kano. Nigeria

Email: amumaru@nwu.edu.ng

Email: amumaru@yahoo.com

Abstract

The optical burst switching (OBS) paradigm is perceived as an intermediate switching technology prior to the

realization of an all-optical network. Burst assembly is the first process that takes place at the edge of an OBS

network. It is crucial to the performance of an OBS network because it greatly influences loss and delay on

such networks. Burst assembly is an important process while burst loss ratio (BLR) and delay are important

issues in OBS. In this paper, an intelligent burst assembly algorithm called a Fuzzy-based Adaptive Length

Burst Assembly (FALBA) algorithm that is based on fuzzy logic and tuning of fuzzy logic parameters is

proposed for OBS network. FALBA was evaluated against itself and the fuzzy adaptive threshold (FAT) burst

assembly algorithm using 12 configurations via simulation. The 12 configurations were derived from three rule

sets (denoted 0,1,2), two defuzzification techniques (Centroid [C]and Largest of Maximum[L]) and two

aggregation methods (Max[M] and Sum[S]) of fuzzy logic. Simulation results have shown that FALBA0LM has

the best BLR performance when compared to its other configurations and the FAT. However, with respect to

delay, FAT only outperforms all configurations of FALBA at low loads (0.0-0.4) but the performance of FAT

also decreases as the load (0.4-1.0) increases. Therefore, at high loads (0.4-1.0) FALBA2CS has the best delay

performance. Our results deduce that FALBA0LM can be used for loss-sensitive applications while FALBA2CS

can be used for delay sensitive applications.

Keywords: Burst Assembly; Burstification; Edge Node; Fuzzy Logic Control; Optical Burst Switching; Delay.

* Corresponding author.

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

58

1. Introduction

The increasing demand for high bandwidth by bandwidth-greedy applications requires a switching technology

that is capable of meeting such demand. Optical Circuit Switching (OCS), Optical Burst Switching (OBS) and

Optical Packet Switching (OPS) are three main switching paradigms considered to address these demands. Of

the three paradigms, OBS [1] provides huge bandwidth [2] and better link utilization through statistical

multiplexing than OCS. Furthermore unlike OPS which requires optical memory which is still technologically

immature [3] OBS works without such limitation. These merits of OBS over OCS and OPS makes it an active

area of research and a candidate for the next generation optical transport backbone. An OBS network is

comprised of edge (ingress and egress) and core nodes which are interconnected by wavelength division

multiplexing (WDM) optical links. The edge nodes provides functions for burst assembly/disassembly, offset-

time computation, signaling, and routing and wavelength assignment while contention resolution and scheduling

functions are performed at the core nodes [4]. Authors in [5-8] have conducted a comprehensive review of

OBS network in which they identified the major issues as follows: burst assembling, contention resolution,

quality of service (QoS) provisioning, routing and wavelength assignment and core node scheduling. Among

these functions, burst assembly is a crucial one and this is due to its effect on the congestion and contention

levels it has on the network which consequently affects network performance. Works in [9,8] have classified

burst assembly in their studies which covers a small set of burst assembly algorithms. Core node scheduling is

vital to the performance of OBS network and authors in [10] have reviewed and classified them into proactive

and reactive scheduling algorithms. Furthermore, Reference [11] compared a selected set core node scheduling

algorithms with focus on QoS. Mechanisms providing QoS differentiation with respect to their complexities and

efficiencies have been reviewed and classified in [12]. Authors in [13] have reviewed various routing

techniques used to proactively prevent contention in OBS. OBS network architecture comprises of edge and

core nodes interconnected by multiple-channel WDM links. Fig. 1 shows model architecture of an OBS

network. In OBS, end users’ data are aggregated and transported as jumbo packets known as bursts. Therefore,

burst assembly is the process of aggregating end users data into a burst based on predefined requirements and

procedure. Using Just-Enough-Time (JET) [14] signaling technique, a newly generated burst is delayed at the

edge node until after a period of time known as the offset-time expires before it is transmitted into the network.

Following the burst generation, a corresponding control packet (CP) is also generated and transmitted into the

network ahead of its burst. This CP is responsible for reserving resources for its burst at the various core nodes.

The basic OBS architecture supports a one-to-one mapping between the CP and its burst. The CP contains

routing, burst arrival time, burst duration and QoS information [3]. The core node uses the CP information to

make reservation or resolve contention. Upon a successful reservation or resolved contention, the core node

updates the CP information and forwards it to downstream node/s otherwise the CP and its corresponding burst

will be dropped. This process is repeated at every core node until the CP gets to its destination. Burst

disassembly takes place upon arrival of the burst at the egress node which forwards the IP packets to the end

users. Fig. 1 shows a typical OBS network architecture. An important issue in the burst assembly process is how

to create bursts of optimal sizes such that burst contention can be minimized and therefore, burst loss is reduced.

This issue has to deal with the burst size creation parameter. Additionally, burst assembly algorithm if not

properly designed cause high delay at low traffic conditions and such characteristic makes them unsuitable for

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

59

delay-sensitive applications. Therefore, in order to alleviate the aforementioned problems, an intelligent burst

assembly algorithm is proposed. The proposed algorithm uses fuzzy logic to make the burst length threshold

value adaptive subject to the current value of the burst length threshold, the incoming traffic load of the

assembler and the bandwidth of the outgoing channel. The main goal of the proposed algorithm is to improve

burst loss and delay performances in an OBS network. The paper is organized as follows: Section I provides a

general introduction to OBS, its issues, its architecture and mode of operation. Section II describes related works

and the working process of the threshold based burst assembly algorithm. Section III describes the design and

implementation procedure of the proposed burst assembly algorithm using fuzzy logic controller. It also

describes the testing and tuning configurations and simulation parameters used. Section IV presents the

simulation results and their discussions. Finally, Section V concludes the paper.

Figure 1: An OBS Network Architecture [3].

2. Review of Related Works

 Burst assembly algorithms have been categorized into four groups: time-based, threshold-based, hybrid-based

and adaptive based [15, 16]. The timer-based burst assembly algorithm [17] is the pioneer burst assembly

algorithm in OBS. As the name implies, it uses a timer to generate a burst whenever the timer threshold expires.

Thus, the timer assembly algorithm produces variable-sized bursts at periodic intervals [18]. The simplicity of

the timer-based assembly technique is its strength. However, at high loads, the timer algorithm generates large

bursts that increase the burst blocking probability at the core nodes. Also, burst of small sizes are generated at

low loads by the algorithm. Furthermore, the timer parameter of the algorithm does not adapt with the dynamic

nature of incoming traffic [19], thus even when the burst size is large enough for transmission it cannot generate

a burst until its timer expires. Hence, resulting into poor transmission efficiency [20]. The second group of burst

assembly algorithms is the threshold-based burst assembly algorithm which are also known as length, size or

volume burst assembly algorithm. The threshold-based burst assembly algorithm [21] is similar to the timer-

based assembly algorithm except that it uses the burst size as a parameter for burst generation instead of a timer.

Thus, threshold-based assembly algorithm generates fixed-size bursts at random intervals of time. Even though,

the threshold-based assembly algorithm is simple and it has a low implementation complexity, it still has

limitations. At low loads, packets experience high delay while at high loads, fixed-size bursts are rapidly

generated and transmitted into the network. The high number of bursts produced at high loads usually lead burst

loss resulting from burst contentions. Similar to the timer algorithm, the threshold-based assembly parameter

does not adapt with the incoming traffic thereby making it unable to fully utilise the available resources. The

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

60

length or threshold-based burst assembly process in OBS starts upon the arrival of the first packet to an edge

node. Upon the arrival of the first packet to the assembler, a burst length counter denoted as b_length that is

associated with the assembler is initialized to zero as shown in Equation 1. After the initialization, the burst

length counter is incremented by the size of the packet which is denoted by packetSize. Subsequent packets

arriving at the assembler will continue to increment the burst length counter as shown in Equation 2. However,

before the burst length counter is updated, a check is made against a pre-defined burst length threshold which is

denoted by pb_length to determine whether the maximum burst size is reached as shown in Equation Error!

Reference source not found.. If the burst length counter is equal to or greater than the preset burst length

threshold, the burst length counter is reset to zero as in Equation 1 and the packets in the assembler queue are

assembled into a burst and forwarded to the burst scheduler for onward transmission to its destination.

Otherwise, the burst length counter is updated according to Equation 2 and the process is repeated for as long as

traffic keeps arriving at the assembler.

blength (1)

blength blength packetSi e (2)

blength pb length (3)

As it can be observed from the above description of the length burst assembly technique, the burst length

threshold (i.e pb_length) remains constant throughout the burst assembly process. This constant burst length

threshold parameters makes the length burst assembly algorithm to lack the flexibility to adapt to dynamic

traffic conditions. Additionally, this algorithm causes high delay at low traffic conditions and such

characteristic makes it unsuitable for delay-sensitive applications. In order to provide service differentiation

through burst assembly, Vokkarane and his colleagues [22] proposed the threshold-based composite burst

assembly algorithm. This algorithm aggregates different classes of packets that are destined for the same egress

node into the same burst. Furthermore, the packets are placed inside the burst in decreasing order of priority

starting from the head of the burst. Thus, whenever contention occurs, burst segmentation is used to drop the tail

of the scheduled burst. Even though this technique provides some degree of service differentiation, it only

improves the loss performance of high priority packets. Furthermore, the assembly threshold parameter is also

not adaptive. Moreover, burst segmentation must be implemented at the core nodes for the technique to be

functional. Likewise, the threshold-based mixed-assembly technique proposed by Zhang and his colleagues

[23] is similar to the work in Vokkarane and his colleagues [22]. The threshold-based mixed-assembly

technique lacks the mechanism to adjust the assembly threshold parameter. The limitations of the Timer and

Threshold-based algorithms paved way for the hybrid burst assembly algorithms. The Max-Time-Min-Max-

Length [24] and the Min-burst Length-Max-Assembly-Period (MBMAP) [25] burst assembly algorithms were

proposed to address the limitations of the timer and threshold-based assembly algorithms. In both algorithms, a

burst is generated when either the maximum time is reached or when the minimum burst length is attained.

Hence, they are considered as hybrid algorithms. These hybrid algorithms have addressed the problems of long

packet delay during low loads and large bursts under high loads. Furthermore, the implementation of these

algorithms are relatively simple. Even though they solve the problems of the basic algorithms they do not

consider the dynamic nature of the incoming traffic in order to adjust the timer or size thresholds of the

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

61

algorithms [26]. Also, under such condition, the hybrid burst assembly algorithms will behave exactly like the

timer and size-threshold assembly algorithms.The last group assembly algorithms belong to the adaptive class of

burst assembly algorithms. Algorithms in this class have their burst creation parameter (timer, burst-size or

both) continuously adjusted subject to real time traffic [27] or network state information (such as loss, delay

congestion level etc). Adaptive burst assembly algorithms are intended to improve the performance of the OBS

network. Researchers have used different approaches such as prediction, soft computing and feedback

mechanisms to adjust the burst creation parameters of assemblers.In order to minimize the burst transmission

delay caused during burst assembly and transmission, Authors such as [28,29,30-33,26] have proposed several

prediction-based burst assembly algorithms. Such algorithms predict either the incoming traffic, burst-size or

timer thresholds. The predicted parameter is used to generate a burst. The purpose of predicting the burst length

is to include the predicted burst size into the burst control packet (BCP) for early transmission so that resource

reservation at downstream nodes can start early even before the burst is generated. Thus, by sending the BCP

ahead of burst completion the delay can be reduced. Reference [28] proposed a set of burst assembly schemes

together with a fast reservation protocol (FRP). The burst assembly schemes work towards reducing the delay

experienced by packets while the FR protocol works towards reducing the burst end-to-end delay. They used

linear prediction filters to predict the traffic offered to the edge node during a time interval and the result is used

as a criterion to assemble a burst. Additionally, the FRP uses another prediction filter to calculate the expected

burst length and assembly duration in order to send the BCP to make an early reservation. In this case, the edge

node does not need to wait for the burst to be assembled before it generates and sends the BCP. Hence, this

approach reduces burst assembly and reservation times and improves packet end-to-end delay. However, the

predicted values may be inaccurate and therefore may lead to poor resource utilization. The mixed-threshold

burst assembly (MTBA) algorithm [29] uses traffic prediction to calculate the expected burst length. The

predicted length is then added to the BCP which is immediately transmitted into the network in order to make

early reservation before the burst is generated. This approach improves the end-to-end delay performance of

high priority bursts since it does not wait for the burst generation process to complete before sending the BCP.

However, poor resource utilization may occur if the generated burst size is less than the predicted length.

Similarly, References [30, 31, 33,26] employed different prediction mechanisms to further minimise delay but

they still suffer from the same problems of the aforementioned prediction based algorithms.In feedback-based

bustifiers, network state information such as network offered load, burst loss, delay, congestion level or other

network performance measurements are collected from the network and they are used to adjust the burst

assembly parameters. They are mainly used to control the congestion level on the network in order to minimize

burst contention. References [34, 35] proposed an adaptive hybrid burst assembly algorithm that adjusts the

timer and size threshold values of the assembler using the congestion information of links incident to the ingress

node. Although the algorithms are adaptive, additional delay is incurred due to the large burst sizes that are

generated at high loads. In addition, the hard limits set on the possible threshold values makes it inflexible,

therefore, limiting the possible range of threshold values it can support and hence affecting its performance.

Reference [36] proposed the Intelligent segment optical burst switching (ISOBS) assembly algorithm that

aggregates IP packets into small fixed-size segments. A group of segments are then considered as a burst. The

burst size and the number of packets inside the segments change according to the input traffic intensity. And

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

62

since, the burst is divided into several segments of equal sizes, there is a short duration between the transmission

of successive segments of the same burst. In the event of contention, only the contending segments known as the

contenting region are affected. A major advantage of ISOBS is that it does not require the conventional burst

segmentation mechanism at the core node. However, ISOBS suffers from the following: firstly, poor resource

utilization may occur due to the additional void created between segments. Secondly, inaccurate time

synchronization between segments may lead to further loss. Thirdly, it requires a specialized core node

scheduling algorithm that is capable of identifying and scheduling related segments.

Reference [37] proposed the adaptive classified cloning and aggregation scheme (ACCS) for high priority

traffic. ACCS uses network loss-rate information to adaptively adjust the hybrid burst assembly thresholds.

ACCS aims to provide better performance in terms of loss and end-to-end delay for high priority traffic.

However, at high loads, ACCS cannot handle the input traffic due to the limitation imposed by the bandwidth at

the outgoing link of the edge node, and for this reason, low priority packets are dropped. Reference [19]

proposed the data-length time-lag product (DTP) burst assembly algorithm which uses the real-time traffic

information together with the burst injection rate to adjust the burst size threshold. Furthermore, DTP uses the

result of the product of the assembly time and assembled burst length as the new threshold for assembling the

next burst.

DTP aims to provide guaranteed burst assembly delay while at the same time lowering the blocking probability

by generating bursts of average sizes. A major limitation of the DTP algorithm is that it executes after every

burst is assembled, hence there is an overhead on the continuous execution of the algorithm for every burst that

is generated. The link loss-rate burst assembly (LLRBA) and path loss-rate burst assembly (PLRBA) [38]

algorithms are proposed to address the issue of contention in OBS network. LLRBA and PLRBA are adaptive

by design and they respectively collect link and path loss rate information in order to determine the congestion

level on the network before generating a burst. They are mainly used to control the congestion level on a

network. Even though, both LLRBA and PLRBA minimize the contention on the network, they increase delay

due to the latency incurred when collecting network state information. The Intelligent-based Burst Assembly

Techniques are another class of burst assembly algorithms proposed to address most of the aforementioned

problems. Burst assemblers in this category use soft computing techniques to intelligently adjust the threshold

value/s of the burst assembler. By intelligence, it means that the burst assembly algorithms have the in-built

capability to learn, understand and make informed decisions based on the information gathered from their

environment.

The fuzzy adaptive threshold algorithm (FAT) [39] is based on the length-threshold assembly algorithm and

fuzzy logic technique. FAT uses fuzzy logic together with the incoming traffic to dynamically adjust the length-

threshold of the assembler.

FAT suffers from high frequency of execution because it is run every time a burst is generated. Reference [40]

proposed a burst assembly algorithm using control theory techniques to measure burst loss ratio performance on

an OBS network. Such approach requires complex mathematical principles in order to analyse and design such

controllers. Authors in [41-45] have proposed a family of Fuzzy-based adaptive burst assembly algorithms to

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

63

address the problem of burst loss ratio and delay.

3. Fuzzy-based Adaptive Length Burst Assembly Algorithm (FALBA) Design

This Section describes the detailed design and implementation phases of the fuzzy-based adaptive length burst

assembly algorithm whose main goal is to improve burst loss and delay performance in an OBS network.

In conventional threshold-based burst assembly algorithm, only a single parameter is considered for burst

creation which is the burst length or threshold (pb_length). However, in the proposed method, the threshold-

based burst assembly process is modelled as a control problem in which the burst length threshold parameter

needs to be adjusted subject to incoming traffic and the bandwidth of the outgoing channel. As such, the

proposed technique is modelled as a Multiple-Input-Single-Output (MISO) fuzzy logic controller. The controller

accepts two inputs and then produces a single output as shown in Fig. 2. At this stage, two inputs and one output

control variables have been identified.

The two input control variables are the burst length threshold and the incoming traffic (also known as offered

load at the burst assembler) and they are denoted by Length and Load respectively. The output of the fuzzy logic

controller is the new value of the burst length threshold (newLength) which will be used for the next cycle of the

burst assembly process.

The assembler offered load which is denoted by Load, is the total amount of traffic received by the assembler

starting from the moment the assembly process started. BW is the bandwidth of the outgoing channel in bits.

Equation 4 shows how the offered load (Load) is calculated prior to passing it to the controller.

FUZZY LOGIC CONTROLLER

Inference
Module

Defuzzification
Module

Fuzzification
Module

Knowledge Base Module

Database

Rule Base

Fuzzy Input/s Fuzzy Output/s

Length

Burst

Assembler
newLength

Length

perSecondTraffic

Incoming packets

Burst

Figure 2: Block Diagram of the proposed Fuzzy logic controller

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

64

The proposed design assumes the following:

i. There is a dedicated burst assembler for every destination

ii. Functions such as burst control packet generation and burst scheduling takes place at their appropriate

times

iii. All links have the same number of wavelengths/ channels

iv. All wavelengths have the same bandwidth capacity

 {

 (4)

The main objective of this design is to minimizes burst loss and end-to-end delay by using the built-in

intelligence of fuzzy logic to adjust the burst length threshold based on the incoming traffic and the bandwidth

of the outgoing channel.

The incoming traffic load is intelligently mapped to the channel bandwidth such that by using the current value

of the burst length threshold together with the mapped traffic load, a new burst length threshold value is

produced using fuzzy logic reasoning.

Fuzzy parameters settings such as fuzzy rules, membership functions, aggregation method and deffuzification

technique support the algorithm in achieving this objective. Fig. 3 shows the proposed fuzzy-based adaptive

length burst assembly algorithm while the definition of variables and functions are given below:

i. i: Burst assembler index

ii. packetQueue (i): Data accumulated for the i-th burst queue (bytes).

iii. blength: Burst length counter.

iv. packetSize: the size of packet in bytes.

v. Length: Length threshold used by the FLC (Fuzzy Logic Controller)in bytes.

vi. l: Initial length threshold in bytes.

vii. Load: Accumulated traffic at the assembler to be used by the FCL.

viii. newLength: New burst length threshold produced after executing the FCL.

ix. perSecondTraffic: Load counter in bits (to be used by Load variable).

x. BW: Channel bandwidth in bits.

xi. AssembleBurst(packetQueue(i)): Assembles the packets in packetQueue(i) into a burst.

xii. FuzzyEngine(Length,Load): This function execute the FLC using the Length and Load variables as

inputs. The function returns a single value that serves as the output of the FLC. The output that is

produced is then used as the new Length threshold for the next cycle of the burst assembly process.

The following subsections describe the fuzzification, knowledge-base, fuzzy inference engine, defuzzification,

and testing, tuning and simulation parameters for the fuzzy-based adaptive burst length burst assembly

algorithm.

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

65

Figure 3: Fuzzy-based Adaptive Length Burst Assembly Algorithm

3.1. Fuzzification

In fuzzy control systems, crisp control variables need to be converted into their equivalent fuzzy variables in

order to control the system under study. Therefore, in this section, the inputs and outputs variables of the fuzzy

logic controller are identified and transformed into a form that can be recognized by the controller using the

following fuzzification steps:

a. Identification of all inputs and outputs and their operational ranges: In this paper, two-inputs and one-

output control variables have been identified. The two input variables are the Length and Load

variables whereas the output variable is the new Length. Table shows the control variables and the

operational ranges.

b. Decide the number of fuzzy partitions for every input and output variable: This study have divided the

universe of discourse of every fuzzy variable into three partitions. Thus, the number of fuzzy partitions,

their names and labels are shown in

 Fuzzy Variable
Number of Fuzzy

Partitions
Partition Name

Partition

Label

Input Length 3 Small Sml

//𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝑷𝒉𝒂𝒔𝒆

𝐿𝑒𝑛𝑔𝑡ℎ 𝑙; 𝑙 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑢𝑟𝑠𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

𝐿𝑜𝑎𝑑 ;

𝑛𝑒𝑤𝐿𝑒𝑛𝑔𝑡ℎ ;

𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐 ;

𝐵𝑊 𝑥 𝐺𝑏𝑝𝑠;

𝑏𝑙𝑒𝑛𝑔𝑡ℎ ;

// 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑷𝒉𝒂𝒔𝒆

1: 𝒘𝒉𝒊𝒍𝒆 𝐼𝑠_𝑇𝑟𝑎𝑓𝑓𝑖𝑐_𝑆𝑡𝑖𝑙𝑙_𝐴𝑟𝑟𝑖𝑣𝑖𝑛𝑔? 𝒅𝒐

2: 𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑝𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 ∗ 8 ;

4: 𝐿𝑜𝑎𝑑 𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐;

5: 𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐 ;

6: 𝒆𝒏𝒅 𝒊𝒇

7: 𝐿𝑜𝑎𝑑 𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐;

8: 𝒊𝒇 𝑏𝑙𝑒𝑛𝑔𝑡ℎ ≥ 𝐿𝑒𝑛𝑔𝑡ℎ 𝒕𝒉𝒆𝒏

9: 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝐵𝑢𝑟𝑠𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑄𝑢𝑒𝑢𝑒 𝑖 ;

1 : 𝑛𝑒𝑤𝐿𝑒𝑛𝑔𝑡ℎ 𝐹𝑢𝑧𝑧𝑦𝐸𝑛𝑔𝑖𝑛𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 𝐿𝑜𝑎𝑑 ;

11: 𝐿𝑒𝑛𝑔𝑡ℎ 𝑛𝑒𝑤𝐿𝑒𝑛𝑔𝑡ℎ;

12: 𝑏𝑙𝑒𝑛𝑔𝑡ℎ ;

13: 𝒆𝒍𝒔𝒆

14: 𝑏𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑙𝑒𝑛𝑔𝑡ℎ 𝑝𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒;

15: 𝒆𝒏𝒅 𝒊𝒇

16: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

Begin FALBA

3: 𝒊𝒇 𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐 ≥ 𝐵𝑊 𝒕𝒉𝒆𝒏

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

66

Middle Mid

Big Big

Load 3

Low Low

Medium Med

High Hig

Output newLength 3

Small Sml

Middle Mid

Big Big

c. .

d. Decide type of membership function to be used for every fuzzy partition: This is the final phase of the

fuzzification process. Here, the appropriate membership functions are selected to define every fuzzy

partition that have been described in the previous step. Table 3 shows the type of membership function

that have been used for all the fuzzy partitions of all the fuzzy variables.

In summary, fuzzification converts the crisp input and output control variables and their values into their

equivalent fuzzy variables and values using the appropriate membership functions. This is a crucial phase in the

development of the fuzzy controller.

3.2. Knowledge Base

The fuzzy knowledge base consist of the database and the rule base. The database is used to store the

information needed for the smooth operation of the controller. Such information include the names of the fuzzy

variables, number of partitions for every variable, type of membership function used for every partition, fuzzy

rules, fuzzy operators and any other information required for the smooth functioning of the fuzzy logic

controller. Most of these information have been defined in the fuzzification phase and the remaining will be

defined in this phase, the inference phase and the defuzzification phase. The rule base is usually made up of a

number of fuzzy rules that are expressed in the form: IF <CONDITIONS> THEN <ACTIONS>. For this

study, all rules have the same structure: IF (Load AND Length) THEN (newLength). Now, the number of

fuzzy rules need to be determined. However, the number of fuzzy rules is directly related to the number of

partitions of the input linguistic variables. In this case, there are two input linguistic variables and each of them

has three partitions. Then, the product of the number of partitions of both input variables gives the total number

of rules that can be generated. Hence, in this case, nine fuzzy rules are used to represent a set of rules.

Furthermore, three different sets of rules have been generated. These sets of rules have been labelled as

FALBA0, FALBA1 and FALBA2 and they represent the first, second, and third set of rules respectively. They

have also been used to produce the results used in this study. The rules set configurations for FALBA0, FALBA1

and FALBA2 are shown below.

Table 1: Inputs, Output variables, and their operating range

 Crisp Variable Fuzzy Variable Operating Range

Input
Length Length 0 -100000 (bytes)

Load Load 0 – 1000000000 (bps)

Output Length newLength 0 -100000 (bytes)

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

67

Table 1: Partition information of the fuzzy variables

 Fuzzy Variable
Number of Fuzzy

Partitions
Partition Name

Partition

Label

Input

Length 3

Small Sml

Middle Mid

Big Big

Load 3

Low Low

Medium Med

High Hig

Output newLength 3

Small Sml

Middle Mid

Big Big

Table 3: Choice of type of membership function for every fuzzy partition

Fuzzy

Variable

Fuzzy

Partition

Type of Membership

Function

Input

Length

Small Triangular

Middle Triangular

Big Triangular

Load

Low Triangular

Medium Triangular

High Triangular

Output newLength

Small Triangular

Middle Triangular

Big Triangular

Rule set 0: FALBA0

Rule 1: IF (Load is Low AND Length is Sml) THEN (newLength is Mid);

Rule 2: IF (Load is Low AND Length is Mid) THEN (newLength is Mid);

Rule 3: IF (Load is Low AND Length is Big) THEN (newLength is Mid);

Rule 4: IF (Load is Med AND Length is Sml) THEN (newLength is Mid);

Rule 5: IF (Load is Med AND Length is Mid) THEN (newLength is Big);

Rule 6: IF (Load is Med AND Length is Big) THEN (newLength is Big);

Rule 7: IF (Load is Hig AND Length is Sml) THEN (newLength is Big);

Rule 8: IF (Load is Hig AND Length is Mid) THEN (newLength is Big);

Rule 9: IF (Load is Hig AND Length is Big) THEN (newLength is Big);

Rule set 1: FALBA1

Rule 1: IF (Load is Low AND Length is Sml) THEN (newLength is Mid);

Rule 2: IF (Load is Low AND Length is Mid) THEN (newLength is Sml);

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

68

Rule 3: IF (Load is Low AND Length is Big) THEN (newLength is Sml);

Rule 4: IF (Load is Med AND Length is Sml) THEN (newLength is Big);

Rule 5: IF (Load is Med AND Length is Mid) THEN (newLength is Big);

Rule 6: IF (Load is Med AND Length is Big) THEN (newLength is Big);

Rule 7: IF (Load is Hig AND Length is Sml) THEN (newLength is Big);

Rule 8: IF (Load is Hig AND Length is Mid) THEN (newLength is Big);

Rule 9: IF (Load is Hig AND Length is Big) THEN (newLength is Big);

Rule set 2: FALBA2

Rule 1: IF (Load is Low AND Length is Sml) THEN (newLength is Sml);

Rule 2: IF (Load is Low AND Length is Mid) THEN (newLength is Sml);

Rule 3: IF (Load is Low AND Length is Big) THEN (newLength is Sml);

Rule 4: IF (Load is Med AND Length is Sml) THEN (newLength is Mid);

Rule 5: IF (Load is Med AND Length is Mid) THEN (newLength is Mid);

Rule 6: IF (Load is Med AND Length is Big) THEN (newLength is Mid);

Rule 7: IF (Load is Hig AND Length is Sml) THEN (newLength is Big);

Rule 8: IF (Load is Hig AND Length is Mid) THEN (newLength is Big);

Rule 9: IF (Load is Hig AND Length is Big) THEN (newLength is Mid);

3.3. Fuzzy Inference Engine

Fuzzy inferencing implies the process of making a fuzzy decision based on the fuzzy input values. The

inferencing process involves the evaluation of input fuzzy values, the activation of the affected rules and their

accumulation. Finally, the fuzzy rules that have been activated are aggregated to produce a single crisp output

for each of the output variables using a deffuzification technique. Tabl 4 shows two configurations of the fuzzy

inference engine that have been used for this study.

Table 4: Fuzzy Inference Engine Configuration

No. Parameter Configuration 1
Configuration

2

1 T-Norm (AND) Minimum Minimum

2 S-Norm (OR) Maximum Maximum

3 Activation Minimum Minimum

4 Accumulation Maximum Algebraic-sum

5
Inference

mechanism
Mamdani Mamdani

3.4. Deffuzification

In this phase, the computed output fuzzy value is converted into a crisp value using a defuzzification technique.

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

69

This crisp value is the new threshold of the length burst assembler to be used in generating the next burst. This

study used the Centroid/Centre of Gravity (CoG) and the Largest of Maximum (LoM) defuzzification

techniques. The two techniques have been used to tune the performance of the fuzzy logic controller.

3.5. Testing and Tuning

The testing and tuning of a fuzzy logic controller can be done in a number of ways as described by Ilyas and his

colleagues [46]. In this study, the tuning involved changing only one of the following settings at a time: the rules

in the rule base; the aggregation method; and the defuzzification technique. From the combinations of the above

settings, 12 unique configurations were formed as described in Table 5 to show the performance of the FALBA

algorithm.

Table 5: FALBA algorithm tuning configurations

Configuration Rules

Set

Aggregation Method Defuzzification Technique

Tuning Number Label Max Sum CoG LoM

1 FALBA0CM 0 Yes Yes

2 FALBA1CM 1 Yes Yes

3 FALBA2CM 2 Yes Yes

4 FALBA0CS 0 Yes Yes

5 FALBA1CS 1 Yes Yes

6 FALBA2CS 2 Yes Yes

7 FALBA0LM 0 Yes Yes

8 FALBA1LM 1 Yes Yes

9 FALBA2LM 2 Yes Yes

10 FALBA0LS 0 Yes Yes

11 FALBA1LS 1 Yes Yes

12 FALBA2LM 2 Yes Yes

3.5.1. Simulation Parameters

The simulation parameters used to evealuate the proposed FALBA algorithms are shown in Table 6.

Table 6: OBS Simulation Parameters and Settings

No. Parameter Value

1 Network Topologies NSFNET

2 Number of channels per link 4 (3 data and 1 control)

3 Bandwidth per channel [BW] (Gbps) 1

4 Traffic Model Poisson

5 Packet Size (Bytes) 1250

6 BCP processing Time (us) 10

7 Scheduling Scheme LAUC

8 Signalling Scheme JET

9 Wavelength Conversion On

10 Burst Segmentation Off

11 Deflection Routing Off

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

70

No. Parameter Value

12 Optical Buffers (FDL) Off

13

Burst Threshold (Bytes)

Minimum (m) 1500

Maximum 100000

Initial (l) 60000

14

Offered Load

Minimum 0.1

Maximum 1

Increment 0.1

3.5.2. Simulation Setup

The FALBA algorithm was designed and implemented using the tools and environment shown in Table 7. Fig.

4 shows the fuzzylite fuzzy logic controller design tool and the graphical representation of the FALBA

algorithm’s fu y logic controller.

Table 7: Design Tools and Implementation Environment

 Item Description

Hardwa

re

Processor type Intel R CoreTM i5

Processor speed 2.00 GHz

Hard Disk Drive 1Terabyte

Memory 8 Gigabyte

Software

Operating System Fedora 18 (Linux)

Network

Simulator

Omnet++ 4.2.2 [47]

OBS Framework OBSModules [48]

Fuzzy Logic

Library

Fuzzylite version 5.0

[49]

Compiler GCC

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

71

Figure 4: A sample operation of the FALBA FLC showing the Input and Output variables, the Membership

Functions and some rules that have been fired to produce a new output.

4. Results and Discussion

This section analyses and discusses the results of the fuzzy-based adaptive length burst assembly (FALBA)

algorithm in terms of the burst loss ratio (BLR) and burst end-to-end delay. The algorithm was compared

against the fuzzy adaptive threshold (FAT) algorithm [39] in order to evaluate its performance. In the following

sections, only the rules sets were changed while the deffuzification techniques and accumulation methods

remained constant. Therefore, the results are grouped into four sets with each group having three different

results of the FALBA algorithm. These groupings resulted from several tuning of the algorithm. Hence, the plots

for FALBA have labels with meanings derived from Table 5. In the following plots, the algorithm is labelled as

FALBAXYZ. Where FALBA denotes the name of the algorithm (FALBA) which is followed by the rules set

number which is denoted by X , then followed by the deffuzification technique which is denoted by Y and

finally the accumulation method which is denoted by Z. For example, FALBA0CM implies algorithm FALBA

was executed with configuration 0, C, and M; where 0, C, and M are the rules set 0, Centroid deffuzification

technique and the largest of Maximum accumulation method respectively.

4.1. Loss and Delay for Tunings 1, 2 and 3

Fig. 5 and Fig. 6 show the plots of burst loss ratio (BLR) and burst end-to-end delay as a function of normalized

offered load for three configurations of FALBA. The configuration consists of three sets of rules: 0, 1 and 2;

whereas the centriod and maximum are the deffuzification technique and accumulation method used

respectively. Fig. 5 depicts the effect of different fuzzy rules sets on the performance of BLR. It shows that at

loads from 0.1 to 0.4, all the configurations of FALBA have good loss performance. However, as the load

increases from 0.5 to 1 inclusive, the different behaviours of the algorithms manifested. The figure shows that at

all loads, FALBA0CM exhibits the best loss perfomance for this configuration compared to other FALBA

configuration and FAT algorithm. The low BLR of FALBAOCM is attributed to its ability to adapt the burst

length threshold such that longer burst size thresholds are produced by the fuzzy logic controller. Thus,

generating bigger burst size lead to contention reduction at the core nodes because fewer number of bursts are

transmitted throught the core nodes which results in low BLR. Fig. 6 shows the effect of different fuzzy rules

sets on the performance of burst end-to-end delay. At low loads starting from 0.1 to 0.3, the FAT algorithm

exhibits a better delay perfromance than the FALBA algortihms. However, from loads 0.4 through load 1,

different FALBA configurations showed better perfromances than the FAT algorithm. The higher delay

incured by FALBA0CM is as a result of the large bursts generated by the algorithm which leads to longer

processiing delay at the core nodes. However, such bursts have lower burst loss ratio as shown in Fig. 5.

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

72

Figure 5: BLR versus offered load for centriod deffuzification technique and maximum accumulation method.

Figure 6: Burst end-to-end delay versus offered load for centriod deffuzification technique and maximum

accumulation method.

4.2. Loss and Delay for Tunings 4, 5 and 6

Fig. 7 and Fig. 8 show the plots of BLR and burst end-to-end delay as a function of normalized offered load for

tunings 4, 5 and 6 as shown in Table 5. The configuration consists of three sets of rules: 0, 1 and 2; with

centriod and sum being the deffuzification technique and accumulation method respectively. Fig. 7 depicts the

effect of centroid deffuzification technique and sum accumulation method on different fuzzy rules sets and their

overall effect on the performance of BLR. As in the case of FALBA0CM, FALBA0CS exhibits the best loss

performance. The causes for this performance are the same as in Section ‎4.1. The other results also follow the

same loss pattern as in tunings 1,2 and 3 described in Table. This shows that the change in accumulation method

from maximum to sum while the results of centroid deffuzification technique remain unchanged has little effect

on the burst loss performance. Similarly, the same interpretations for tunings 1, 2 and 3 given earlier holds true

for the burst end-to-end delay plots shown in Fig. 8.

Figure 7: Burst loss ratio versus offered load for centriod deffuzification technique and sum accumulation

method.

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

73

Figure 8: Burst end-to-end delay versus offered load for centriod deffuzification technique and sum

accumulation method.

4.3. Loss and Delay Analysis for Tunings 7, 8 and 9

Fig. 9 and Fig. 10 show the plots of BLR and burst end-to-end delay as a function of normalized offered load for

tuninngs 7, 8 and 9 as shwon in Table 5. The configuration consists of three sets of rules: 0, 1 and 2; with largest

of maximum and maximum being the deffuzification technique and accumulation method respectively. Fig. 9

shows the effect of the largest of maximum deffuzification technique and the maximum accumulation method

on different fuzzy rules sets and their overall effect on performance of BLR. The figure shows that the BLR of

the FALBA algorithms have been considerably reduced. This improved BLR performance is attributed to the

sensitivity of the FLC for producing bursts of suitable sizes when the largest of maximum deffuzification

technique and the maximum method are used. The rule set configuration of FALBA0LM favours the generation

of the largest bursts when compared to FALBA1LM, FALBA2LM and FAT. Fig. 10 shows the bursts average end-

to-end delay expereicned by the FALBA algorithms using three sets of fuzzy rules. The figurs shows that the

FAT algorithm exhibited the best BLR perfomance at loads between 0.1 and 0.4 inclusive. However, as the load

increased, FALBA2LM exhibited the best perfromance for the rest of the loads. This show that FALBA2LM

produced bursts sizes with the smallest thresholds among its peers. Therefore, the bursts experienced the least

delay when compared with/to the other FALBA configuratons and the FAT algortihm.

Figure 9: BLR versus Offered Load for largest of maximum deffuzification technique and maximum

accumulation method.

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

74

Figure 10: Burst end-to-end delay versus offered load for largest of maximum deffuzification technique and

maximum accumulation method.

4.4. Loss and Delay Analysis for Tunings 10, 11 and 12

Fig. 11 and Fig. 12 respectively show the plots of BLR and burst end-to-end delay as a function of normalized

offered load for tunings 10, 11 and 12 as shown in Table 5. The configuration consists of three sets of rules: 0, 1

and 2; with largest of maximum and sum being the deffuzification technique and accumulation method

respectively. Fig. 11 shows the BLR performances for FALBA0LS, FALBA1LS, FALBA2LS and FAT algorithms.

The figure shows that the change in the accumulation method has little effect on the BLR performance for

FALBA0LS. However, other configuration of FALBA have shown a drop in perfromance when the load is high.

Even with these drop in BLR performance, the FALBA configurations still performed better than the FAT

algorithm except for FALBA2LS which shows a drop in perfromance at high loads ranging from 0.9 and 1. Fig.

12 shows a significant improvement in the delay performance of FALBA2LS which is at the expense of its high

BLR. This improved deley performance can be attributed to the short bursts it generates.

Figure 11: BLR versus offered load for largest of maximum deffuzification technique and sum accumulation

method.

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

75

Figure 12: Burst end-to-end delay versus offered load for largest of maximum deffuzification technique and

sum accumulation method.

5. Conclusion

In this paper, an intelligent burst assembly algorithm that is based on fuzzy logic has been designed and

implemented for optical burst switched network. Specifically, this paper describes the detailed design and

implementation of the fuzzy-based adaptive length burst assembly (FALBA) algorithm. The FALBA algorithm

has been modelled as a fuzzy control process in which the burst length threshold of the conventional threshold-

based burst assembly algorithm is made adaptive subject to the network offered load, current value of the

predefined burst length threshold and the bandwidth of the outgoing channel. Furthermore, it describes the

testing and tuning configurations of the algorithm and the additional simulation parameters used to generate the

results. It was shown that the FALBA algorithm can be tuned intelligently using fuzzy logic. Hence, FALBA0LM

has the best BLR performance when compared to its other configurations and the FAT. However, with respect

to delay, FAT only outperforms all configurations of FALBA at low loads (0.0-0.4) but the performance of FAT

decreases as the load (0.4-1.0) increases. Therefore, at high loads (0.4-1.0) FALBA2CS has the best delay

performance. In conclusion, FALBA0LM should be used for loss-sensitive applications while FALBA2CS should

be used for delay sensitive applications.

References

[1] C. Qiao and M. Yoo, "Optical burst switching (OBS)–a new paradigm for an Optical Internet," Journal

of high speed networks, vol. 8, pp. 69-84, 1999.

[2] B. Mukherjee, Optical WDM Networks (Optical Networks): Springer, 2006.

[3] S. Y. Oh, H. H. Hong, and M. H. Kang, "A data burst assembly algorithm in optical burst switching

networks," ETRI Journal, vol. 24, pp. 311-322, Aug 2002.

[4] M. Maier, Optical switching networks vol. 324: Cambridge University Press Cambridge, 2008.

[5] P. K. Chandra, A. K. Turuk, and B. Sahoo, "Survey on optical burst switching in WDM networks," in

Industrial and Information Systems (ICIIS), 2009 International Conference on, 2009, pp. 83-88.

[6] F. Farahmand, V. M. Vokkarane, J. P. Jue, J. J. P. C. Rodrigues, and M. M. Freire, "Optical burst

switching network: A multi-layered approach," Journal of High Speed Networks, vol. 16, pp. 105-122,

2007.

[7] J. P. Jue, W. H. Yang, Y. C. Kim, and Q. Zhang, "Optical packet and burst switched networks: a

review," IET Communications, vol. 3, pp. 334-352, 2009.

[8] T. F. Fernandez, "Challenges, Issues and Research directions in Optical Burst Switching," International

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

76

Journal of Computer Applications Technology and Research, vol. 2, pp. 131-136.

[9] H. Kaur and R. Kaler, "Burst Assembly and Signaling Protocols in OBS," in Proceedings of National

Conference on Challenges and Opportunities in Information Technology COIT-2007 RIMT-IET,

Mandi Gobindgarh, India, pp. 268-272.

[10] J. Li, C. Qiao, and Y. Chen, "Recent progress in the scheduling algorithms in optical-burst-switched

networks [Invited]," J. Opt. Netw., vol. 3, pp. 229-241, 2004.

[11] R. Adgaonkar and S. Sharma, "A Review of Burst Scheduling Algorithm in WDM Optical Burst

Switching Network," International Journal of Computer Science Issues(IJCSI), vol. 8, 2011.

[12] N. Akar, E. Karasan, K. G. Vlachos, E. A. Varvarigos, D. Careglio, M. Klinkowski, et al., "A survey of

quality of service differentiation mechanisms for optical burst switching networks," Optical Switching

and Networking, vol. 7, pp. 1-11, 2010.

[13] C. Yahaya, M. S. Abd Latiff, and A. B. Mohamed, "A review of routing strategies for optical burst

switched networks," International Journal of Communication Systems, pp. n/a-n/a, 2011.

[14] M. Yoo and C. Qiao, "Just-enough-time (JET): A high speed protocol for bursty traffic in optical

networks," Montreal, Can, 1997, pp. 26-27.

[15] A. A. Yayah, Y. Coulibaly, A. S. Ismail, and G. Rouskas, "Hybrid offset-time and burst assembly

algorithm (H-OTBA) for delay sensitive applications over optical burst switching networks,"

International Journal of Communication Systems, 2014.

[16] B. Shihada and P.-H. Ho, "Transport Control Protocol in Optical Burst Switched Networks: Issues,

Solutions, and Challenges," IEEE Communications Surveys & Tutorials,, vol. 10, pp. 70-86, 2008.

[17] A. Ge, F. Callegati, and L. S. Tamil, "On Optical Burst Switching and Self-Similar Traffic," IEEE

Communications Letters vol. 4, pp. 98-100, 2000.

[18] B. Kantarci, S. F. Oktug, and T. Atmaca, "Performance of OBS techniques under self-similar traffic

based on various burst assembly techniques," Computer Communications, vol. 30, pp. 315-325, 2007.

[19] C. Yuan, Z. Zhang, Z. Li, Y. He, and A. Xu, "A unified study of burst assembly in optical burst

switching networks," Photonic Network Communications, vol. 21, pp. 228-237, 2011.

[20] J. Yang, G. Wang, and S. Jia, "Improved adaptive-threshold burst assembly in optical burst switching

networks," Chin. Opt. Lett., vol. 5, pp. 325-327, 2007.

[21] V. M. Vokkarane, K. Haridoss, and J. P. Jue, "Threshold-based burst assembly policies for QoS

support in optical burst-switched networks," presented at the The Convergence of Information

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

77

Technologies and Communications, 2002.

[22] V. M. Vokkarane, Q. Zhang, J. P. Jue, and B. Chen, "Generalized burst assembly and scheduling

techniques for QoS support in optical burst-switched networks," in IEEE Global Telecommunications

Conference, 2002. GLOBECOM'02., 2002, pp. 2747-2751.

[23] Z. Zhang, J. Luo, Q. Zeng, and Y. Zhou, "Novel threshold-based burst assembly scheme for QoS

support in optical burst switched WDM networks," in Performance and Control of Next-Generation

Communications Networks, 2003, pp. 250-256.

[24] X. Yu, Y. Chen, and C. Qiao, "A Study of traffic statistics of assembled burst traffic in optical burst-

switched networks," 2002, pp. 149-159.

[25] X. Cao, J. Li, Y. Chen, and C. Qiao, "Assembling TCP/IP packets in Optical Burst Switched

Networks," presented at the IEEE GLOBECOM’ 2, Taipei, China, 2 2.

[26] M. Mangwala, B. B. Sigweni, and O. O. Ekabua, "Implementation of Efficient Burst Assembly

Algorithm with traffic prediction," Computer Technology and Application, vol. 4, pp. 153-161, 2013.

[27] H. Kaur and R. S. Kaler, "Burst Assembly and Signaling Protocols in OBS," presented at the

Proceedings of National Conference on Challenges and Opportunities in Information Technology

COIT-2007 RIMT-IET, Mandi Gobindgarh, India, 2007.

[28] K. Seklou, A. Sideri, P. Kokkinos, and E. Varvarigos, "New assembly techniques and fast reservation

protocols for optical burst switched networks based on traffic prediction," Optical Switching and

Networking, vol. 10, pp. 132-148, Apr 2013.

[29] H.-l. Liu and S. Jiang, "A mixed-length and time threshold burst assembly algorithm based on traffic

prediction in OBS network," Int. J. Sensing, Computing & Control, vol. 2, pp. 87-93, 2012.

[30] A. Sideri and E. A. Varvarigos, "New assembly techniques for optical burst switched networks based

on traffic prediction," in Optical Network Design and Modeling, ed: Springer, 2007, pp. 358-367.

[31] J. Liu, N. Ansari, and T. J. Ott, "FRR for latency reduction and QoS provisioning in OBS networks,"

IEEE Journal on Selected Areas in Communications, vol. 21, pp. 1210-1219, 2003.

[32] T. Mikoshi and T. Takenaka, "Improvement of burst transmission delay using offset time for burst

assembly in optical burt switching," in 7th Asia-Pacific Symposium on Information and

Telecommunication Technologies (APSITT) 2008, pp. 13-18.

[33] A. K. Garg, "Traffic prediction based burst assembly mechanism for OBS," Optik - International

Journal for Light and Electron Optics, vol. 124, pp. 2017-2019, 8// 2013.

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

78

[34] B. Kantarci and S. Oktug, "Adaptive Threshold Based Burst Assembly in OBS Networks," presented at

the IEEE Canadian Conference on Electrical and Computer Engineering, 2006.

[35] A. Gupta, R. S. Kaler, and H. Singh, "Investigation of OBS assembly technique based on various

scheduling techniques for maximizing throughput," Optik - International Journal for Light and Electron

Optics, vol. 124, pp. 840-844, 5// 2013.

[36] X. Yi-Yuan and Z. Jian-Guo, "An intelligent segmented burst assembly mechanism in optical burst

switching networks," Chinese Physics Letters, vol. 25, p. 2535, 2008.

[37] S. Askar, G. Zervas, D. K. Hunter, and D. Simeonidou, "Adaptive classified cloning and aggregation

technique for delay and loss sensitive applications in OBS networks," in Optical Fiber Communication

Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference,

2011, pp. 1-3.

[38] B. Kantarci and S. Oktug, "Loss rate-based burst assembly to resolve contention in optical burst

switching networks," IET communications, vol. 2, pp. 137-143, 2008.

[39] J.-r. YANG, S.-l. JIA, and G. WANG, "Burst assembly algorithm based on fuzzy-adaptive-threshold "

Journal of Harbin Engineering University, vol. 6, p. 013, 2007.

[40] W. H. F. Aly, M. F. Zhani, and H. Elbiaze, "On controlling burst loss ratio inside an OBS network,"

presented at the IEEE Symposium on Computers and Communications, ISCC 2008.

[41] A. Muhammad Umaru, M. S. Abd Latiff, and Y. Coulibaly, "Fuzzy-Based Adaptive Hybrid Burst

Assembly Technique for Optical Burst Switched Networks," Journal of Computer Networks and

Communications, vol. 2014, p. 10, 2014.

[42] A. M. Umaru, M. S. A. Latiff, and Y. Coulibaly, "A novel fuzzy-based adaptive timer burst assembly

algorithm for optical burst switching networks," Journal of Theoretical and Applied Information

Technology, vol. 67, pp. 220-227, 2014.

[43] A. M. Umaru, C. Yahaya, and M. S. A. Latiff, "A Fuzzy-based Burst Assembly Approach to Reduce

End-to-End Delay in OBS Networks," in 5th International Conference on Photonics, Kuala Lumpur,

Malaysia, 2014, pp. 29-31.

[44] A. M. Umaru, M. S. Abd Latiff, and Y. Coulibaly, "Fuzzy-Based Adaptive Length Burst Assembly

Technique for Loss Reduction in Optical Burst Switched Networks," Advanced Science Letters, vol.

22, pp. 2681-2685, 2016.

[45] B. Lakshmanan, S. Ramasamy, and S. Alavandar, "Adaptive Burst Assembly Algorithm for Reducing

Burst Loss and Delay in OBS Networks.," Asian Journal of Information Technology, vol. 15, p. 10,

International Journal of Computer (IJC) (2019) Volume 35, No 1, pp 57-78

79

2016.

[46] A. Ilyas, S. Jahan, and M. Ayyub, "Tuning Of Conventional Pid And Fuzzy Logic Controller Using

Different Defuzzification Techniques," International Journal of Scientific & Technology Research, vol.

2, 2013.

[47] A. Varga and R. Hornig, "An overview of the OMNeT++ simulation environment," presented at the

Proceedings of the 1st international conference on Simulation tools and techniques for

communications, networks and systems & workshops, 2008.

[48] F. Espina, J. Armendariz, N. Garc, D. Morat, M. Izal, and E. Maga, "OBS Network Model for

OMNeT++: A Performance Evaluation," presented at the Proceedings of the 3rd International ICST

Conference on Simulation Tools and Techniques, Torremolinos, Malaga, Spain, 2010.

[49] J. Rada-Vilela. (2013, 01-03-2013, URL: http://www.fuzzylite.com). fuzzylite: A fuzzy logic control

library written in C++.

http://www.fuzzylite.com/

