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Abstract 

The optical burst switching (OBS) paradigm is perceived as an intermediate switching technology prior to the 

realization of an all-optical network. Burst assembly is the first process that takes place at the edge of an OBS 

network.  It is crucial to the performance of an OBS network because it greatly influences loss and delay on 

such networks.  Burst assembly is an important process while  burst loss ratio (BLR) and delay are important 

issues in OBS.  In this paper, an intelligent burst assembly algorithm called a Fuzzy-based Adaptive Length 

Burst Assembly (FALBA) algorithm that is based on fuzzy logic and tuning of fuzzy logic parameters is 

proposed for OBS network. FALBA was evaluated against itself and the fuzzy adaptive threshold (FAT) burst 

assembly algorithm using 12 configurations via simulation. The 12 configurations were derived from three rule 

sets (denoted 0,1,2), two defuzzification techniques (Centroid [C]and Largest of Maximum[L]) and two 

aggregation methods (Max[M] and Sum[S]) of fuzzy logic.  Simulation results have shown that FALBA0LM has 

the best BLR performance when compared to its other configurations and the FAT. However, with respect to 

delay, FAT only outperforms all configurations of FALBA at low loads (0.0-0.4) but the performance of FAT 

also decreases as the load (0.4-1.0) increases. Therefore, at high loads (0.4-1.0)  FALBA2CS has the best delay 

performance. Our results deduce that FALBA0LM can be used for loss-sensitive applications while FALBA2CS 

can be used for delay sensitive applications. 
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1. Introduction 

The increasing demand for high bandwidth by bandwidth-greedy applications requires a switching technology 

that is capable of meeting such demand. Optical Circuit Switching (OCS), Optical Burst Switching (OBS) and 

Optical Packet Switching (OPS) are three main switching paradigms considered to address these demands.  Of 

the three paradigms, OBS [1] provides huge bandwidth  [2] and better link utilization through statistical 

multiplexing than OCS. Furthermore unlike OPS which requires optical memory which is still technologically 

immature [3] OBS works without such limitation. These merits of OBS over OCS and OPS makes it an active 

area of research and a candidate for the next generation optical transport backbone.  An OBS network is 

comprised of edge (ingress and egress) and core nodes which are interconnected by wavelength division 

multiplexing (WDM) optical links. The edge nodes provides functions for burst assembly/disassembly, offset-

time computation, signaling, and routing and wavelength assignment while contention resolution and scheduling 

functions are performed at the core nodes [4].  Authors  in [5-8] have conducted a comprehensive review of 

OBS network in which they identified the major issues as follows: burst assembling, contention resolution, 

quality of service (QoS) provisioning, routing and wavelength assignment and core node scheduling. Among 

these functions, burst assembly is a crucial one and this is due to its effect on the congestion and contention 

levels it has on the network which consequently affects network performance. Works in [9,8] have classified 

burst assembly in their studies which covers a small set of burst assembly algorithms. Core node scheduling is 

vital to the performance of OBS network and authors in [10] have reviewed and classified them into proactive 

and reactive scheduling algorithms. Furthermore, Reference [11] compared a selected set core node scheduling 

algorithms with focus on QoS. Mechanisms providing QoS differentiation with respect to their complexities and 

efficiencies have been reviewed and classified in [12]. Authors in [13] have reviewed  various routing 

techniques used to proactively prevent contention in OBS.   OBS network architecture comprises of edge and 

core nodes interconnected by multiple-channel WDM links. Fig. 1 shows model architecture of an OBS 

network.  In OBS, end users’ data are aggregated and transported as jumbo packets known as bursts. Therefore, 

burst assembly is the process of aggregating end users data into a burst based on predefined requirements and 

procedure. Using Just-Enough-Time (JET) [14] signaling technique, a newly generated burst is delayed at the 

edge node until after a period of time known as the offset-time expires before it is transmitted into the network. 

Following the burst generation, a corresponding control packet (CP) is also generated and transmitted into the 

network ahead of its burst. This CP is responsible for reserving resources for its burst at the various core nodes.  

The basic OBS architecture supports a one-to-one mapping between the CP and its burst. The CP contains 

routing, burst arrival time, burst duration and QoS information [3].  The core node uses the CP information to 

make reservation or resolve contention. Upon a successful reservation or resolved contention, the core node 

updates the CP information and forwards it to downstream node/s otherwise the CP and its corresponding burst 

will be dropped.  This process is repeated at every core node until the CP gets to its destination. Burst 

disassembly takes place upon arrival of the burst at the egress node which forwards the IP packets to the end 

users. Fig. 1 shows a typical OBS network architecture. An important issue in the burst assembly process is how 

to create bursts of optimal sizes such that burst contention can be minimized and therefore, burst loss is reduced. 

This issue has to deal with the burst size creation parameter. Additionally, burst assembly algorithm if not 

properly designed cause high delay at low traffic conditions and such characteristic makes them unsuitable for 
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delay-sensitive applications. Therefore, in order to alleviate the aforementioned problems, an intelligent burst 

assembly algorithm is proposed. The proposed algorithm uses fuzzy logic to make the burst length threshold 

value adaptive subject to the current value of the burst length threshold, the incoming traffic load of the 

assembler and the bandwidth of the outgoing channel. The main goal of the proposed algorithm is to improve 

burst loss and delay performances in an OBS network. The paper is organized as follows: Section I provides a 

general introduction to OBS, its issues, its architecture and mode of operation. Section II describes related works 

and  the working process of the threshold based burst assembly algorithm. Section III describes the design and 

implementation procedure of the proposed burst assembly algorithm using fuzzy logic controller. It also 

describes the testing and tuning configurations and simulation parameters used. Section IV presents the 

simulation results and their discussions. Finally, Section V concludes the paper. 

 

Figure 1: An OBS Network Architecture [3]. 

2. Review of Related Works 

 Burst assembly algorithms have been categorized into four groups: time-based, threshold-based, hybrid-based 

and adaptive based [15, 16].  The timer-based burst assembly algorithm [17] is the pioneer burst assembly 

algorithm in OBS. As the name implies, it uses a timer to generate a burst whenever the timer threshold expires. 

Thus, the timer assembly algorithm  produces variable-sized bursts at periodic intervals [18]. The simplicity of 

the timer-based assembly technique is its strength. However, at high loads, the timer algorithm generates large 

bursts that increase the burst blocking probability at the core nodes. Also, burst of small sizes are generated at 

low loads by the  algorithm. Furthermore, the timer parameter of the algorithm does not adapt with the dynamic 

nature of incoming traffic [19], thus even when the burst size is large enough for transmission it cannot generate 

a burst until its timer expires. Hence, resulting into poor transmission efficiency [20]. The second group of burst 

assembly algorithms is the threshold-based burst assembly algorithm which are also known as length, size or 

volume burst assembly algorithm.  The threshold-based burst assembly algorithm [21] is similar to the timer-

based assembly algorithm except that it uses the burst size as a parameter for burst generation instead of a timer. 

Thus, threshold-based assembly algorithm generates fixed-size bursts at random intervals of time. Even though, 

the threshold-based assembly algorithm is simple and it has a low implementation complexity, it still has 

limitations. At low loads, packets experience high delay while at high loads, fixed-size bursts are rapidly 

generated and transmitted into the network. The high number of bursts produced at high loads usually lead burst 

loss resulting from burst contentions. Similar to the timer algorithm, the threshold-based assembly parameter 

does not adapt with the incoming traffic thereby making it unable to fully utilise the available resources.  The 
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length or threshold-based burst assembly process in OBS starts upon the arrival of the first packet to an edge 

node. Upon the arrival of the first packet to the assembler, a burst length counter denoted as b_length that is 

associated with the assembler is initialized to zero as shown in Equation 1. After the initialization, the burst 

length counter is incremented by the size of the packet which is denoted by packetSize. Subsequent packets 

arriving at the assembler will continue to increment the burst length counter as  shown in Equation 2. However, 

before the burst length counter is updated, a check is made against a pre-defined burst length threshold which is 

denoted by pb_length to determine whether the maximum burst size is reached as shown in Equation Error! 

Reference source not found..  If the burst length counter is equal to or greater than the preset burst length 

threshold, the burst length counter is reset to zero as in Equation 1 and the packets in the assembler queue are 

assembled into a burst and forwarded to the burst scheduler for onward transmission to its destination. 

Otherwise, the burst length counter is updated according to Equation 2 and the process is repeated for as long as 

traffic keeps arriving at the assembler. 

blength   (1) 

blength   blength  packetSi e (2) 

blength     pb length (3) 

As it can be observed from the above description of the length burst assembly technique, the burst length 

threshold (i.e pb_length) remains constant throughout the burst assembly process. This constant burst length 

threshold parameters makes the length burst assembly algorithm to lack the flexibility to adapt to dynamic 

traffic conditions. Additionally, this algorithm causes high delay  at low traffic conditions and such 

characteristic makes it unsuitable for delay-sensitive applications.  In order to provide service differentiation 

through burst assembly, Vokkarane and his colleagues [22] proposed the threshold-based composite burst 

assembly algorithm. This algorithm aggregates different classes of packets that are destined for the same egress 

node into the same burst. Furthermore, the packets are placed inside the burst in decreasing order of priority 

starting from the head of the burst. Thus, whenever contention occurs, burst segmentation is used to drop the tail 

of the scheduled burst. Even though this technique provides some degree of service differentiation, it only 

improves the loss performance of high priority packets. Furthermore, the assembly threshold parameter is also 

not adaptive. Moreover, burst segmentation must be implemented at the core nodes for the technique to be 

functional.  Likewise, the threshold-based mixed-assembly technique proposed by Zhang and his colleagues 

[23] is similar to the work in Vokkarane and his colleagues [22]. The threshold-based mixed-assembly 

technique lacks the mechanism to adjust the assembly threshold parameter. The limitations of the Timer and 

Threshold-based algorithms paved way for the hybrid burst assembly algorithms. The Max-Time-Min-Max-

Length [24] and the Min-burst Length-Max-Assembly-Period (MBMAP) [25] burst assembly algorithms were 

proposed to address the limitations of the timer and threshold-based assembly algorithms. In both algorithms, a 

burst is generated when either the maximum time is reached or when the minimum burst length is attained. 

Hence, they are considered as hybrid algorithms. These hybrid algorithms have addressed the problems of long 

packet delay during low loads and large bursts under high loads. Furthermore, the implementation of these 

algorithms are relatively simple. Even though they solve the problems of the basic algorithms they do not 

consider the dynamic nature of the incoming traffic in order to adjust the timer or size thresholds of the 
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algorithms [26]. Also, under such condition, the hybrid burst assembly algorithms will behave exactly like the 

timer and size-threshold assembly algorithms.The last group assembly algorithms belong to the adaptive class of 

burst assembly algorithms.  Algorithms in this class have their  burst creation parameter (timer, burst-size or 

both) continuously adjusted subject to real time traffic [27]  or network state information (such as loss, delay 

congestion level etc). Adaptive burst assembly algorithms are intended to improve the performance of the OBS 

network. Researchers have used different approaches such as  prediction, soft computing and feedback 

mechanisms to adjust the burst creation parameters of assemblers.In order to minimize the burst transmission 

delay caused during burst assembly and transmission, Authors  such as [28,29,30-33,26] have proposed several 

prediction-based burst assembly algorithms. Such algorithms predict either the incoming traffic, burst-size or 

timer thresholds. The predicted parameter is used to generate a burst. The purpose of predicting the burst length 

is to include the predicted burst size into the burst control packet (BCP) for early transmission so that resource 

reservation at downstream nodes can start early even before the burst is generated. Thus, by sending the BCP 

ahead of burst completion the delay can be reduced.  Reference [28] proposed a set of burst assembly schemes 

together with a fast reservation protocol (FRP). The burst assembly schemes work towards reducing the delay 

experienced by packets while the FR protocol works towards reducing the burst end-to-end delay. They used 

linear prediction filters to predict the traffic offered to the edge node during a time interval and the result is used 

as a criterion to assemble a burst. Additionally, the FRP uses another prediction filter to calculate the expected 

burst length and assembly duration in order to send the BCP to make an early reservation. In this case, the edge 

node does not need to wait for the burst to be assembled before it generates and sends the BCP. Hence, this 

approach reduces burst assembly and reservation times and improves packet end-to-end delay. However, the 

predicted values may be inaccurate and therefore may lead to poor resource utilization. The mixed-threshold 

burst assembly (MTBA) algorithm [29] uses traffic prediction to calculate the expected burst length. The 

predicted length is then added to the BCP which is immediately transmitted into the network in order to make 

early reservation before the burst is generated. This approach improves the end-to-end delay performance of 

high priority bursts since it does not wait for the burst generation process to complete before sending the BCP. 

However, poor resource utilization may occur if the generated burst size is less than the predicted length. 

Similarly, References [30, 31, 33,26] employed different prediction mechanisms to  further minimise delay but 

they still suffer from the same problems of the aforementioned prediction based algorithms.In feedback-based 

bustifiers, network state information such as network offered load, burst loss, delay, congestion level or other 

network performance measurements are collected from the network and they are used to adjust the burst 

assembly parameters. They are mainly used to control the congestion level on the network in order to minimize 

burst contention. References [34, 35] proposed an adaptive hybrid burst assembly algorithm that adjusts the 

timer and size threshold values of the assembler using the congestion information of links incident to the ingress 

node. Although the algorithms are adaptive, additional delay is incurred due to the large burst sizes that are 

generated at high loads. In addition, the hard limits set on the possible threshold values makes it inflexible, 

therefore, limiting the possible range of threshold values it can support and hence affecting its performance.  

Reference [36] proposed the Intelligent segment optical burst switching (ISOBS) assembly algorithm that 

aggregates IP packets into small fixed-size segments. A group of segments are then considered as a burst. The  

burst size and the number of packets inside the segments change according to the input traffic intensity. And 



International Journal of Computer (IJC) (2019) Volume 35, No  1, pp 57-78 

62 

since, the burst is divided into several segments of equal sizes, there is a short duration between the transmission 

of successive segments of the same burst. In the event of contention, only the contending segments known as the 

contenting region are affected. A major advantage of ISOBS is that it does not require the conventional burst 

segmentation mechanism at the core node. However, ISOBS suffers from the following: firstly, poor resource 

utilization may occur due to the additional void created between segments. Secondly, inaccurate time 

synchronization between segments may lead to further loss. Thirdly, it requires a specialized core node 

scheduling algorithm that is capable of identifying and scheduling related segments.  

Reference [37] proposed the adaptive classified cloning and aggregation scheme (ACCS) for high priority 

traffic. ACCS uses network loss-rate information to adaptively adjust the hybrid burst assembly thresholds. 

ACCS aims to provide better performance in terms of loss and end-to-end delay for high priority traffic. 

However, at high loads, ACCS cannot handle the input traffic due to the limitation imposed by the bandwidth at 

the outgoing link of the edge node, and for this reason, low priority packets are dropped. Reference [19] 

proposed the data-length time-lag product (DTP) burst assembly algorithm which uses the real-time traffic 

information together with the burst injection rate to adjust the burst size threshold. Furthermore, DTP uses the 

result of the product of the assembly time and assembled burst length as the new threshold for assembling the 

next burst.  

DTP aims to provide guaranteed burst assembly delay while at the same time lowering the blocking probability 

by  generating bursts of average sizes. A major limitation of the DTP algorithm is that it executes after every 

burst is assembled, hence there is an overhead on the continuous execution of the algorithm for every burst that 

is generated. The link loss-rate burst assembly (LLRBA) and path loss-rate burst assembly (PLRBA) [38] 

algorithms are proposed to address the issue of contention in OBS network. LLRBA and PLRBA are adaptive 

by design and they respectively collect link and path loss rate information in order to determine the congestion 

level on the network before generating a burst. They are mainly used to control the congestion level on a 

network. Even though, both LLRBA and PLRBA minimize the contention on the network, they increase delay 

due to the latency incurred when collecting network state information. The Intelligent-based Burst Assembly 

Techniques are another class of burst assembly algorithms proposed to address most of the aforementioned 

problems. Burst assemblers in this category use soft computing techniques to intelligently adjust the threshold 

value/s of the burst assembler. By intelligence, it means that the burst assembly algorithms have the in-built 

capability to learn, understand and make informed decisions based on the information gathered from their 

environment.  

The fuzzy adaptive threshold algorithm (FAT) [39] is based on the length-threshold assembly algorithm and 

fuzzy logic technique.  FAT uses fuzzy logic together with the incoming traffic to dynamically adjust the length-

threshold of the assembler.  

FAT suffers from high frequency of execution because it is run every time a burst is generated. Reference [40] 

proposed a burst assembly algorithm using control theory techniques to measure burst loss ratio performance on 

an OBS network. Such approach requires complex mathematical principles in order to analyse and design such 

controllers.  Authors in [41-45] have proposed a family of Fuzzy-based adaptive burst assembly algorithms to 
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address the problem of burst loss ratio and delay. 

3. Fuzzy-based Adaptive Length Burst Assembly Algorithm (FALBA) Design 

This Section describes the detailed design and implementation phases of the fuzzy-based adaptive length burst 

assembly algorithm whose main goal is to improve burst loss and delay performance in an OBS network.  

In conventional threshold-based burst assembly algorithm, only a single parameter is considered for burst 

creation which is the burst length or threshold (pb_length). However, in the proposed method, the threshold-

based burst assembly process is modelled as a control problem in which the burst length threshold parameter 

needs to be adjusted subject to  incoming traffic and the bandwidth of the outgoing channel. As such, the 

proposed technique is modelled as a Multiple-Input-Single-Output (MISO) fuzzy logic controller. The controller 

accepts two inputs and then produces a single output as shown in Fig. 2. At this stage, two inputs and one output 

control variables have been identified.  

The two input control variables are the burst length threshold and the incoming traffic (also known as offered 

load at the burst assembler) and they are denoted by Length and Load respectively. The output of the fuzzy logic 

controller is the new value of the burst length threshold (newLength) which will be used for the next cycle of the 

burst assembly process.  

The assembler offered load which is denoted by Load, is the total amount of traffic received by the assembler 

starting from the moment the assembly process started. BW is the bandwidth of the outgoing channel in bits. 

Equation 4 shows how the offered load (Load) is calculated prior to passing it to the controller. 

FUZZY LOGIC CONTROLLER

Inference
Module

Defuzzification 
Module

Fuzzification
Module

Knowledge Base Module

Database

Rule Base

Fuzzy Input/s Fuzzy Output/s

Length 

Burst

Assembler
newLength

Length

perSecondTraffic

Incoming packets

Burst

 

Figure 2:  Block Diagram of the proposed Fuzzy logic controller 
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The proposed design assumes the following: 

i. There is a dedicated burst assembler for every destination 

ii. Functions such as burst control packet generation and burst scheduling takes place at their appropriate 

times 

iii. All links have the same number of wavelengths/ channels 

iv. All wavelengths have the same bandwidth capacity 

     {      

                         

                          
 (4) 

The main objective of this design is to minimizes burst loss and end-to-end delay by using the built-in 

intelligence of fuzzy logic to adjust the burst length threshold based on the incoming traffic and the bandwidth 

of the outgoing channel.  

The incoming traffic load is intelligently mapped to the channel bandwidth such that by using the current value 

of the burst length threshold together with the mapped traffic load, a new burst length threshold value is 

produced using fuzzy logic reasoning.  

Fuzzy parameters settings such as fuzzy rules, membership functions, aggregation method and deffuzification 

technique support the algorithm in achieving this objective. Fig. 3 shows the proposed fuzzy-based adaptive 

length burst assembly algorithm while the definition of variables and functions are given below: 

i. i: Burst assembler  index  

ii. packetQueue (i): Data accumulated for the i-th burst queue (bytes).  

iii. blength: Burst length counter.  

iv. packetSize: the size of packet in bytes. 

v. Length: Length threshold used by the FLC (Fuzzy Logic Controller)in bytes.   

vi. l: Initial length  threshold  in bytes.  

vii. Load: Accumulated traffic at the assembler to be used by the FCL.  

viii. newLength: New burst length threshold produced after executing the FCL.  

ix. perSecondTraffic: Load counter in  bits (to be used by Load variable). 

x. BW: Channel bandwidth in bits.  

xi. AssembleBurst(packetQueue(i)): Assembles the packets in packetQueue(i)  into a burst. 

xii. FuzzyEngine(Length,Load): This function execute the FLC using the Length and Load variables as 

inputs. The function returns a single value that serves as the output of the FLC. The output that is 

produced is then used as the new Length threshold for the next cycle of the burst assembly process. 

The following subsections describe the fuzzification, knowledge-base, fuzzy inference engine, defuzzification, 

and testing, tuning and simulation parameters for the fuzzy-based adaptive burst length burst assembly 

algorithm. 
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Figure 3: Fuzzy-based Adaptive Length Burst Assembly Algorithm 

3.1. Fuzzification 

In fuzzy control systems, crisp control variables need to be converted into their equivalent fuzzy variables in 

order to control the system under study. Therefore, in this section, the inputs and outputs variables of the fuzzy 

logic controller are identified and transformed into a form that can be recognized by the controller using the 

following fuzzification steps: 

a. Identification of all inputs and outputs and their operational ranges:  In this paper, two-inputs and one-

output control variables have been identified. The two input variables are the Length and Load 

variables whereas the output variable is the new Length. Table shows the control variables and the 

operational ranges. 

b. Decide the number of fuzzy partitions for every input and output variable: This study have divided the 

universe of discourse of every fuzzy variable into three partitions. Thus, the number of fuzzy partitions, 

their names and labels are shown in  

 Fuzzy Variable 
Number of Fuzzy 

Partitions 
Partition Name 

Partition 

Label 

Input Length 3 Small Sml 

//𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏  𝑷𝒉𝒂𝒔𝒆 

𝐿𝑒𝑛𝑔𝑡ℎ   𝑙;  𝑙 𝑖𝑠 𝑡ℎ𝑒  𝑝𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑢𝑟𝑠𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 

𝐿𝑜𝑎𝑑    ; 

𝑛𝑒𝑤𝐿𝑒𝑛𝑔𝑡ℎ     ; 

𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐   ; 

𝐵𝑊   𝑥 𝐺𝑏𝑝𝑠; 

𝑏𝑙𝑒𝑛𝑔𝑡ℎ     ; 

// 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏  𝑷𝒉𝒂𝒔𝒆 

1:  𝒘𝒉𝒊𝒍𝒆  𝐼𝑠_𝑇𝑟𝑎𝑓𝑓𝑖𝑐_𝑆𝑡𝑖𝑙𝑙_𝐴𝑟𝑟𝑖𝑣𝑖𝑛𝑔?   𝒅𝒐 

2:         𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐   𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐   𝑝𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 ∗ 8 ; 

4:                𝐿𝑜𝑎𝑑   𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐; 

5:                𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐   ; 

6:         𝒆𝒏𝒅 𝒊𝒇 

7:         𝐿𝑜𝑎𝑑   𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐; 

8:         𝒊𝒇 𝑏𝑙𝑒𝑛𝑔𝑡ℎ  ≥  𝐿𝑒𝑛𝑔𝑡ℎ  𝒕𝒉𝒆𝒏 

9:                𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝐵𝑢𝑟𝑠𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑄𝑢𝑒𝑢𝑒 𝑖  ; 

1 :                𝑛𝑒𝑤𝐿𝑒𝑛𝑔𝑡ℎ    𝐹𝑢𝑧𝑧𝑦𝐸𝑛𝑔𝑖𝑛𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 𝐿𝑜𝑎𝑑 ; 

11:                𝐿𝑒𝑛𝑔𝑡ℎ    𝑛𝑒𝑤𝐿𝑒𝑛𝑔𝑡ℎ; 

12:                𝑏𝑙𝑒𝑛𝑔𝑡ℎ     ; 

13:         𝒆𝒍𝒔𝒆 

14:                𝑏𝑙𝑒𝑛𝑔𝑡ℎ  𝑏𝑙𝑒𝑛𝑔𝑡ℎ   𝑝𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒; 

15:         𝒆𝒏𝒅 𝒊𝒇 

16:  𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

Begin FALBA 

 

3:       𝒊𝒇  𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑟𝑎𝑓𝑓𝑖𝑐 ≥ 𝐵𝑊  𝒕𝒉𝒆𝒏 
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Middle Mid 

Big Big 

Load 3 

Low Low 

Medium Med 

High Hig 

Output newLength 3 

Small Sml 

Middle Mid 

Big Big 

c. . 

d.  Decide type of membership function to be used for every fuzzy partition: This is the final phase of the 

fuzzification process. Here, the appropriate membership functions are selected to define every fuzzy 

partition that have been described in the previous step. Table 3 shows the type of membership function 

that have been used for all the fuzzy partitions of all the  fuzzy variables. 

In summary, fuzzification converts the crisp input and output control variables and their values into their 

equivalent fuzzy variables and values using the appropriate membership functions. This is a crucial phase in the 

development of the fuzzy controller.  

3.2. Knowledge Base 

The fuzzy knowledge base consist of the database and the rule base.  The database is used to store the 

information needed for the smooth operation of the controller. Such information include the names of the fuzzy 

variables, number of partitions for every variable, type of membership function used for every partition, fuzzy 

rules, fuzzy operators and any other information required for the smooth functioning of the fuzzy logic 

controller. Most of these information have been defined in the fuzzification phase and the remaining will be 

defined in this phase, the inference phase and the defuzzification phase. The rule base is usually made up of  a 

number of fuzzy rules that are expressed in the form:   IF <CONDITIONS> THEN <ACTIONS>. For this 

study, all rules have the same structure: IF (Load AND Length) THEN (newLength). Now,  the  number of 

fuzzy rules need to be determined. However, the number of fuzzy rules is directly related to the number of 

partitions of the input linguistic variables. In this case, there are two input linguistic variables and each of them 

has three partitions. Then, the product of the number of partitions of both input variables gives the total number 

of rules that can be generated. Hence, in this case, nine fuzzy rules are used to represent a set of rules. 

Furthermore, three different sets of rules have been generated. These sets of rules have been labelled as 

FALBA0, FALBA1 and FALBA2 and they represent the first, second, and third set of rules respectively. They 

have also been used to produce the results used in this study. The rules set configurations for FALBA0, FALBA1 

and FALBA2 are shown below. 

Table 1: Inputs, Output variables, and their operating range 

 Crisp Variable Fuzzy Variable Operating Range 

Input 
Length Length 0 -100000 (bytes) 

Load Load 0 – 1000000000 (bps) 

Output Length newLength 0 -100000 (bytes) 
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Table 1: Partition information of the fuzzy variables 

 Fuzzy Variable 
Number of Fuzzy 

Partitions 
Partition Name 

Partition 

Label 

Input 

Length 3 

Small Sml 

Middle Mid 

Big Big 

Load 3 

Low Low 

Medium Med 

High Hig 

Output newLength 3 

Small Sml 

Middle Mid 

Big Big 

Table 3: Choice of type of membership function for every fuzzy partition 

 
Fuzzy 

Variable 

Fuzzy 

Partition 

Type of Membership 

Function 

Input 

Length 

Small Triangular 

Middle Triangular 

Big Triangular 

Load 

Low Triangular 

Medium Triangular 

High Triangular 

Output newLength 

Small Triangular 

Middle Triangular 

Big Triangular 

Rule set 0: FALBA0 

Rule 1: IF (Load is Low AND Length is Sml) THEN (newLength is Mid); 

Rule 2: IF (Load is Low AND Length is Mid) THEN (newLength is Mid); 

Rule 3: IF (Load is Low AND Length is Big) THEN (newLength is Mid); 

Rule 4: IF (Load is Med AND Length is Sml) THEN (newLength is Mid); 

Rule 5: IF (Load is Med AND Length is Mid) THEN (newLength is Big); 

Rule 6: IF (Load is Med AND Length is Big) THEN (newLength is Big); 

Rule 7: IF (Load is Hig  AND Length is Sml) THEN (newLength is Big); 

Rule 8: IF (Load is Hig  AND Length is Mid) THEN (newLength is Big); 

Rule 9: IF (Load is Hig  AND Length is Big) THEN (newLength is Big); 

Rule set 1: FALBA1 

Rule 1: IF (Load is Low AND Length is Sml) THEN (newLength is Mid); 

Rule 2: IF (Load is Low AND Length is Mid) THEN (newLength is Sml); 
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Rule 3: IF (Load is Low AND Length is Big) THEN (newLength is Sml); 

Rule 4: IF (Load is Med AND Length is Sml) THEN (newLength is Big); 

Rule 5: IF (Load is Med AND Length is Mid) THEN (newLength is Big); 

Rule 6: IF (Load is Med AND Length is Big) THEN (newLength is Big); 

Rule 7: IF (Load is Hig  AND Length is Sml) THEN (newLength is Big); 

Rule 8: IF (Load is Hig  AND Length is Mid) THEN (newLength is Big); 

Rule 9: IF (Load is Hig  AND Length is Big) THEN (newLength is Big); 

Rule set 2: FALBA2 

Rule 1: IF (Load is Low AND Length is Sml) THEN (newLength is Sml); 

Rule 2: IF (Load is Low AND Length is Mid) THEN (newLength is Sml); 

Rule 3: IF (Load is Low AND Length is Big) THEN (newLength is Sml); 

Rule 4: IF (Load is Med AND Length is Sml) THEN (newLength is Mid); 

Rule 5: IF (Load is Med AND Length is Mid) THEN (newLength is Mid); 

Rule 6: IF (Load is Med AND Length is Big) THEN (newLength is Mid); 

Rule 7: IF (Load is Hig  AND Length is Sml) THEN (newLength is Big); 

Rule 8: IF (Load is Hig  AND Length is Mid) THEN (newLength is Big); 

Rule 9: IF (Load is Hig  AND Length is Big) THEN (newLength is Mid); 

3.3. Fuzzy Inference Engine 

Fuzzy inferencing implies the process of making a fuzzy decision based on the fuzzy input values. The 

inferencing process involves the evaluation of input fuzzy values, the activation of the affected rules and their 

accumulation. Finally, the fuzzy rules that have been activated are aggregated to produce a single crisp output 

for each of the output variables using  a deffuzification technique. Tabl 4 shows two configurations of the fuzzy 

inference engine that have been used for this study. 

Table 4: Fuzzy Inference Engine Configuration 

No. Parameter Configuration 1 
Configuration 

2 

1 T-Norm (AND) Minimum Minimum 

2 S-Norm (OR) Maximum Maximum 

3 Activation Minimum Minimum 

4 Accumulation Maximum Algebraic-sum 

5 
Inference 

mechanism 
Mamdani Mamdani 

3.4. Deffuzification 

In this phase, the computed output fuzzy value is converted into a crisp value using a defuzzification technique. 
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This crisp value is the new threshold of the length burst assembler to be used in generating the next burst. This 

study used the Centroid/Centre of Gravity (CoG) and the Largest of Maximum (LoM) defuzzification 

techniques. The two techniques have been used to tune the performance of the fuzzy logic controller.  

3.5. Testing and Tuning    

The testing and tuning of a fuzzy logic controller can be done in a number of ways as described by Ilyas and his 

colleagues [46]. In this study, the tuning involved changing only one of the following settings at a time: the rules 

in the rule base; the aggregation method; and the defuzzification technique. From the combinations of the above 

settings, 12 unique configurations were formed as described in Table 5 to show the performance of the FALBA 

algorithm.   

Table 5: FALBA algorithm tuning configurations 

Configuration Rules 

Set 

Aggregation Method Defuzzification Technique 

Tuning Number Label Max Sum CoG LoM 

1 FALBA0CM 0 Yes  Yes  

2 FALBA1CM 1 Yes  Yes  

3 FALBA2CM 2 Yes  Yes  

4 FALBA0CS 0  Yes Yes  

5 FALBA1CS 1  Yes Yes  

6 FALBA2CS 2  Yes Yes  

7 FALBA0LM 0 Yes   Yes 

8 FALBA1LM 1 Yes   Yes 

9 FALBA2LM 2 Yes   Yes 

10 FALBA0LS 0  Yes  Yes 

11 FALBA1LS 1  Yes  Yes 

12 FALBA2LM 2  Yes  Yes 

3.5.1. Simulation Parameters 

The simulation parameters used to evealuate the proposed FALBA algorithms are shown in Table 6. 

Table 6: OBS Simulation Parameters and Settings 

No. Parameter Value 

1 Network Topologies NSFNET 

2 Number of channels per link 4 (3 data and 1 control) 

3 Bandwidth per channel [BW ] (Gbps) 1 

4 Traffic Model Poisson 

5 Packet Size (Bytes) 1250 

6 BCP processing Time (us) 10 

7 Scheduling Scheme LAUC 

8 Signalling Scheme JET 

9 Wavelength Conversion On 

10 Burst Segmentation Off 

11 Deflection Routing Off 
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No. Parameter Value 

12 Optical Buffers (FDL) Off 

 

 

13 

 

 

Burst Threshold (Bytes) 

Minimum (m) 1500 

Maximum 100000 

Initial (l) 60000 

 

 

14 

 

 

Offered Load 

Minimum 0.1 

Maximum 1 

Increment 0.1 

3.5.2. Simulation Setup 

The FALBA algorithm was designed and implemented using the tools and  environment shown in Table 7. Fig. 

4 shows the fuzzylite fuzzy logic controller design tool and the graphical representation of the FALBA 

algorithm’s fu  y logic controller.   

Table 7: Design Tools and Implementation Environment 

 Item Description 

 

 

Hardwa

re 

Processor type Intel R  CoreTM i5 

Processor speed 2.00 GHz 

Hard Disk Drive 1Terabyte 

Memory 8 Gigabyte 

 

 

Software 

Operating System Fedora 18 (Linux) 

Network 

Simulator 

Omnet++ 4.2.2 [47] 

OBS Framework OBSModules [48] 

Fuzzy Logic 

Library 

Fuzzylite version 5.0 

[49] 

Compiler GCC 
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Figure 4: A sample operation of the FALBA FLC showing the Input and Output variables, the Membership 

Functions and some rules that have been fired to produce a new output. 

4. Results and Discussion 

This section analyses and discusses the  results of the fuzzy-based adaptive  length burst assembly (FALBA) 

algorithm in terms of the burst loss ratio (BLR) and burst end-to-end delay. The algorithm was compared 

against the fuzzy adaptive threshold (FAT) algorithm [39] in order to evaluate its performance. In the following 

sections, only the rules sets were changed while the deffuzification techniques and accumulation methods 

remained constant. Therefore, the results are grouped into four sets with each group having three different 

results of the FALBA algorithm. These groupings resulted from several tuning of the algorithm. Hence, the plots 

for FALBA have labels with meanings derived from Table 5. In the following plots, the algorithm is labelled as 

FALBAXYZ. Where FALBA denotes the name of the algorithm (FALBA) which is followed by the rules set 

number which is denoted by X , then followed by the deffuzification technique which is denoted by Y and 

finally the accumulation method which is denoted by Z. For example, FALBA0CM implies algorithm FALBA 

was executed with configuration 0, C, and M; where 0, C, and M are the rules set 0, Centroid deffuzification 

technique and the largest of Maximum accumulation method respectively.  

4.1. Loss and Delay for Tunings 1, 2 and 3 

Fig. 5 and Fig. 6 show the plots of burst loss ratio (BLR) and burst end-to-end delay as a function of normalized 

offered load for three configurations of FALBA. The configuration consists of three sets of rules: 0, 1 and 2; 

whereas the centriod and maximum are the deffuzification technique and accumulation method used 

respectively. Fig. 5 depicts the effect of different fuzzy rules sets on the performance of BLR. It shows that at 

loads from 0.1 to 0.4, all the configurations of FALBA have good loss performance. However, as the load 

increases from 0.5 to 1 inclusive, the different behaviours of the algorithms manifested. The figure shows that at 

all loads, FALBA0CM exhibits the best loss perfomance for this configuration compared to other FALBA 

configuration and FAT algorithm. The low  BLR of FALBAOCM is attributed to its ability to adapt the burst 

length threshold such that longer burst size thresholds are produced by the fuzzy logic controller. Thus, 

generating bigger burst size lead to contention reduction at the core nodes because fewer number of bursts are 

transmitted throught the core nodes which results in low BLR. Fig. 6 shows the effect of different fuzzy rules 

sets on the performance of burst end-to-end delay. At low loads starting from 0.1 to 0.3, the FAT algorithm 

exhibits a better delay perfromance than the FALBA algortihms. However, from loads 0.4 through load 1, 

different FALBA configurations showed better perfromances than the FAT algorithm.   The higher delay 

incured by FALBA0CM is as a result of the large bursts generated by the algorithm which leads to longer 

processiing delay at the core nodes. However, such bursts have lower burst loss ratio as shown in Fig. 5.  
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Figure 5: BLR versus offered load for centriod deffuzification technique and maximum accumulation method. 

 

Figure 6: Burst end-to-end delay versus offered load for centriod deffuzification technique and maximum 

accumulation method. 

4.2. Loss and Delay for Tunings 4, 5 and 6 

Fig. 7 and Fig. 8 show the plots of BLR and burst end-to-end delay as a function of normalized offered load for 

tunings 4, 5 and 6 as shown in Table 5. The configuration consists of three sets of rules: 0, 1 and 2; with 

centriod and sum being the deffuzification technique and accumulation method respectively. Fig. 7 depicts the 

effect of centroid deffuzification technique and sum accumulation method on different fuzzy rules sets and their 

overall effect on the performance of BLR. As in the case of FALBA0CM, FALBA0CS exhibits the best loss 

performance. The causes for this performance are the same as in Section ‎4.1. The other results also follow the 

same loss pattern as in tunings 1,2 and 3 described in Table. This shows that the change in accumulation method 

from maximum to sum while the results of centroid deffuzification technique remain unchanged has little effect 

on the burst loss performance. Similarly, the same interpretations for tunings 1, 2 and 3 given earlier holds true 

for the burst end-to-end delay plots shown in Fig. 8. 

 

Figure 7: Burst loss ratio versus offered load for centriod deffuzification technique and sum accumulation 

method. 
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Figure 8: Burst end-to-end delay versus offered load for centriod deffuzification technique and sum 

accumulation method. 

4.3. Loss and Delay Analysis for Tunings 7, 8 and 9 

Fig. 9 and Fig. 10 show the plots of BLR and burst end-to-end delay as a function of normalized offered load for 

tuninngs 7, 8 and 9 as shwon in Table 5. The configuration consists of three sets of rules: 0, 1 and 2; with largest 

of maximum and maximum being the deffuzification technique and accumulation method respectively. Fig. 9 

shows the effect of the largest of maximum deffuzification technique and the maximum accumulation method 

on different fuzzy rules sets and their overall effect on performance of BLR. The figure shows that the BLR of 

the FALBA algorithms have been considerably reduced. This improved BLR performance is attributed to the 

sensitivity of the FLC for producing bursts of suitable sizes when the largest of maximum deffuzification 

technique and the maximum method are used. The rule set configuration of FALBA0LM favours the generation 

of the largest bursts when compared to FALBA1LM, FALBA2LM and FAT. Fig. 10 shows the bursts average end-

to-end delay expereicned by the FALBA algorithms using three sets of fuzzy rules. The figurs shows that the 

FAT algorithm exhibited the best BLR perfomance at loads between 0.1 and 0.4 inclusive. However, as the load 

increased, FALBA2LM exhibited the best perfromance for the rest of the loads. This show that FALBA2LM 

produced bursts sizes with the smallest thresholds among its peers. Therefore, the bursts experienced the least 

delay when compared with/to the other FALBA configuratons and the FAT algortihm. 

 

Figure 9: BLR versus Offered Load for largest of maximum deffuzification technique and maximum 

accumulation method. 



International Journal of Computer (IJC) (2019) Volume 35, No  1, pp 57-78 

74 

 

Figure 10: Burst end-to-end delay versus offered load for largest of maximum deffuzification technique and 

maximum accumulation method. 

4.4. Loss and Delay Analysis for Tunings 10, 11 and 12 

Fig. 11 and Fig. 12 respectively show the plots of BLR and burst end-to-end delay as a function of normalized 

offered load for tunings 10, 11 and 12 as shown in Table 5. The configuration consists of three sets of rules: 0, 1 

and 2; with  largest of maximum and sum being the deffuzification technique and accumulation method 

respectively. Fig. 11 shows the BLR performances for FALBA0LS, FALBA1LS, FALBA2LS and FAT algorithms.  

The figure shows that the change in the accumulation method has little effect on the BLR performance for 

FALBA0LS. However, other configuration of FALBA have shown a drop in perfromance when the load is high. 

Even with these drop in BLR performance, the FALBA configurations still performed better than the FAT 

algorithm except for FALBA2LS which shows a drop in perfromance at high loads ranging from 0.9 and 1. Fig. 

12 shows a significant improvement in the delay performance of FALBA2LS which is at the expense of its high 

BLR. This improved deley performance can be attributed to the short bursts it generates. 

 

Figure 11: BLR versus offered load for largest of maximum deffuzification technique and sum accumulation 

method. 
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Figure 12:  Burst end-to-end delay versus offered load for largest of maximum deffuzification technique and 

sum accumulation method. 

5. Conclusion 

In this paper, an intelligent burst assembly algorithm that is based on fuzzy logic has been designed and 

implemented for optical burst switched network. Specifically, this paper describes the detailed design and 

implementation of the fuzzy-based adaptive length burst assembly (FALBA) algorithm. The FALBA algorithm 

has been modelled as a fuzzy control process in which the burst length threshold of the conventional threshold-

based burst assembly algorithm is made adaptive subject to the network offered load, current value of the 

predefined burst length threshold and the bandwidth of the outgoing channel. Furthermore, it describes the 

testing and tuning configurations of the algorithm and the additional simulation parameters used to generate the 

results. It was shown that the FALBA algorithm can be tuned intelligently using fuzzy logic. Hence, FALBA0LM 

has the best BLR performance when compared to its other configurations and the FAT. However, with respect 

to delay, FAT only outperforms all configurations of FALBA at low loads (0.0-0.4) but the performance of FAT 

decreases as the load (0.4-1.0) increases. Therefore, at high loads (0.4-1.0) FALBA2CS has the best delay 

performance. In conclusion, FALBA0LM should be used for loss-sensitive applications while FALBA2CS should 

be used for delay sensitive applications. 
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