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Abstract 

Feature selection is an important and challenging task in machine learning and data mining techniques to avoid 

the curse of dimensionality and maximize the classification accuracy. Moreover, feature selection helps to 

reduce computational complexity of learning algorithm, improve prediction performance, better data 

understanding and reduce data storage space. Swarm intelligence based feature selection approach enables to 

find an optimal feature subset from an extremely large dimensionality of features for building the most accurate 

classifier model. There is still a type of researches that is not done yet in data mining. In this paper, the 

utilization of swarm intelligence algorithms for feature selection process in high dimensional data focusing on 

medical data classification is form the subject matter. The results shows that swarm intelligence algorithms 

reviewed based on state-of-the-art literature have a promising capability that can be applied in feature selections 

techniques. The significance of this work is to present the comparison and various alternatives of swarm 

algorithms to be applied in feature selections for high dimensional classification.  

Keywords: Feature Selection; Swarm Intelligence; High Dimensional Classification. 

1. Introduction 

The rapid development of modern technology had led to the generation of huge amounts of data that involve a 

large number of features and data obtained from biomedical field, for the purpose of early diagnosis of diseases. 

These data often have the characteristics of high dimensions, which pose a high challenge to existing data 

mining and machine learning algorithms. However, a huge number of non-relevance and repetitive attributes 

exist in original dataset. Also, the large dimensionality and little instance convey extraordinary troubles to the 

data preprocessing. Subsequently, the researchers have developed various methodologies [1–4] to arrangement 

with these issues. 
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When the number of features in data increases, the computational cost also increases. To overcome this 

problem, it is necessary to search a way to reduce the dimensionality of data in consideration. In general, there 

are two processes often used: feature (subset) selection, and feature extraction.  

Feature selection (FS) works by eliminating the features that are not relevant or are redundant. By removing 

these features, FS can reduce the number of features of the data, increase the learning process, clarify the 

learned model, and/or improve the performance [5,6]. On the other hand, feature extraction (or feature 

construction) [7–8], creates novel variables as combinations of others to moderate the dimensionality strictly 

connected to feature selection. The key distinction is that feature selection chooses a subset of fist features while 

feature extraction makes new features from the original features. Feature selection technique is mainly 

addressed in this paper [10]. 

FS can be defined as the process of finding the best informative feature subsets in order to escape the scourge of 

dimensionality and maximize the classification accuracy. The idea for feature selection is to be able to 

determine the best attributes that are suitable to the classification task. A comprehensive search for the best 

attribute subset of a given dataset is essentially unbearable in most circumstances. The various kinds of search 

techniques such as complete search, greedy search, heuristic search, and random search [5,11,12] have been 

applied to feature selection process. 

However, most existing feature selection strategies still undergo from declining in local optima and high 

computational cost [13,14]. Therefore, an effective search procedure is needed to better solve feature selection 

problems. In recent years, swarm intelligence (SI) has emerged as a fast and reasonably precise method in 

solving complex search problems, such as classifying high-dimensionality medical data. However, there aren't 

any comprehensive views on the strengths and weaknesses of these approaches at the side of their most 

appropriate application areas. Therefore, this paper aims to study SI based feature selection techniques for high 

dimensional medical data with thousands or tens of thousands of features, with the desire selection only a small 

feature subsets and attaining better classification accuracy than usage of all features. The process of studying the 

articles is by considering into how the algorithms adjusted to the problem in attribute selections specifically in 

improving the classification accuracy, reducing the numbers of features without conceding the quality of the 

results and evaluating the performance in term of error rate and processing time. The rest of this paper is 

structured as follows. Section II defines the basic concept of feature selection (FS) and swarm intelligence (SI). 

Section III reviews the typical SI algorithms for feature selection. Section IV discusses the related works on SI 

used in feature selection for high dimensional classification. Lastly, conclusion is described in Section V. 

2. Background  

2.1. Feature Selection (FS) 

Feature selection is a challenging task due primarily to a huge search area, wherever the full range of probable 

solutions is 2n for a dataset with n attributes [5,6]. The task is flattering more interesting as n is growing in 

several areas with the advances in the data collecting techniques and therefore the improved complexity of these 

issues. It’s been applied to be a useful and cost-effective approach to arrange large-dimensional data for data 
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mining and machine learning. The general procedure for feature selection technique is illustrated in Figure 1 [5]. 

 

Figure 1: General Feature Selection Process [5] 

Feature selection is the course of finding a subset of related attributes in an original dataset. It enhances the 

classification accuracy by eliminating unrelated and unnecessary feature.  It can be distinguished three models 

according to their relationship with learning methods: filter, wrapper and embedded methods. 

Filter methods evaluate how much the attributes are relative to the problem by checking properties of the data 

without developing learning algorithms. This method is extremely effective [15]. Generally, a feature relevancy 

score is calculated and then the small scoring features are removed. Subsequently, high ranked features are 

performed as an input to the classification process. Compared with wrapper model, it has the less computational 

cost. The core shortcoming of this filter method is that it neglects the result of the features subset within the 

induction rule, as expressed in [16]. 

 

Figure 2: A general framework of wrapper models [15] 

Wrapper methods select the features by taking into account each probable subset of them and the features 

subsets are ranked in keeping with their extrapolative influence, whereas considering the inbuilt classifier as a 

recorder. It considers the relevance and redundancy information of the features in additionally to their impacts at 

the predictive strength. It makes use of a specific learning algorithm to assess the value of the chosen attributes. 

Specified a predefined learning rule, a general work flow of the wrapper techniques is shown in Figure 2 [15].  

Compared with filter methods, wrapper methods attain higher prognostic accuracy estimations, due to the fact 

that they do not forget the biases of the learning algorithms. However, wrapper methods are very costly over 
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computation [16].  

Embedded model carry out feature selection as portion of the learning process and are typically precise to 

specified machine learning model [17]. This approach is a trade-off between the two methods by inserting the 

feature selection into the model building. Accordingly, this model yield improvement of both filter and wrapper 

models: they are so much less computationally rigorous than wrapper methods, due to the fact that they don’t 

need to run the gaining knowledge of models frequently to evaluate the features, and they encompass the 

interaction with the training model [15]. 

2.2. Swarm Intelligence (SI) 

Swarm intelligence (SI) system consists typically of an population of uncomplicated agents interacting nearby 

with each other and with their surroundings. The inspiration regularly derives from nature, mainly biological 

systems. The agents trail quite simple procedures, and although there is no centralized management structure 

uttering however individual agents ought to behave. Emergence of "intelligent" worldwide behavior might be 

additionally caused to the interactions between agents. SI algorithms such as Ant Colony Optimization (ACO), 

Artificial Bee Colony Optimization (ABC), Particle Swarm Optimization (PSO) and other systems prove its 

powerful ability in biological issues. These algorithms have currently been proven to supply suitable outcomes 

in a huge type of actual-world applications [18]. 

 

Figure 3: General Framework of SI algorithm [19] 

Figure 3 presented the general framework of SI algorithms, in which the look for best solution is performed 

through swarm of agents. Every agent holds a candidate solution. The search starts with random initialization of 

the agents in line with the matter. This can be tracked with the aid of assessment of the quality of the candidate 

solutions proposed by the agents. The third stage is that the new subset generation that differs from one 

algorithm to any other. The generation of novel candidate subsets tracks the algorithms’ sources of inspiration 

[19]. 



International Journal of Computer (IJC) (2019) Volume 33, No  1, pp 69-83 

73 

The evolution of swarm algorithms starting from earliest algorithm which is PSO followed by ACO, AFSA, 

ABC, Flower Algorithm (FA), Bats Algorithm (BA) and Salp Swarm Algorithm (SSA), the recent algorithms. 

The basic concept of each algorithms been inspired by the biological behavior of the swarms colony are also 

highlighted. The strengths and drawbacks for each algorithm have been pointed out based on previous literature. 

The literature review stated in this paper is primarily focused on fifteen tasks issued among 2010 and 2018. It is 

perceived that PSO, ACO and ABC are the widespread choice of meta-heuristic search algorithms applied to 

high dimensional classification [20]. 

3. Typical swarm intelligence algorithms for feature selection 

3.1. Particle Swarm Optimization (PSO) 

PSO is a standout amongst the most powerful and dominant swarm intelligence techniques [18] introduced by 

Kennedy and Eberhart in 1995 [21], which is inspired by social behaviors found in a flock of migrating birds or 

fish tutoring for tackling optimization problems. In PSO, a flock contains many entities referred to particles 

interconnecting among group to explore for the best solutions while moving in the large search space. Each 

particle contains a position, a candidate solution of the problem and a velocity, normally an n-dimension vector 

of numerical values. The velocity additionally has indistinguishable structure from position, which denotes the 

speed and direction that the particle move in the subsequent iteration. In each repetition, the velocity of a 

particle is primarily updated based on their own experience (local best, pbest) and the experience of other 

around them (global best, gbest). Equation (1) and (2) are utilized to update the velocity and position of every 

particle. 

vid (t+1) = ω × vid (t) + r1 c1 (pid (t) – xid (t))  + r2 c2 (pgd (t) – xid (t))               (1) 

xid (t+1) = xid (t) + vid (t+1)                   (2) 

where vid (t)  and xid (t) are velocity and position of particle i in d dimension at time t, respectively. pid and  pgd 

are local best and global best positions in dimension d. c1 and c2 are two positive coefficients named learning 

factors, and r1 and r2 are two arbitrary function uniformly distributed in [0, 1]. The operator ω is the inertia 

weight employed as an improvement to control the impact of the previous history of velocities on the current 

velocity and also plays the role of balancing the global search and the local search. A predefined maximum 

velocity, vmax to the range [−vmax, vmax] commonly limits the velocity values. 

One interesting characteristic of PSO is that it does not use the gradient of the function, thus, objective functions 

need not to be differentiable. Moreover, the basic PSO is astonishingly simple. Adding variants to the original 

implementation can help it adapt to more complicated problems. PSO has been successfully applied in many 

areas other than bioinformatics including industrial applications and power systems. 

3.2. Ant Colony Optimization (ACO) 

ACO become applied through Dorigo and his colleagues [9] to catch the shortest path between the nest of ants 

and a supply of food. This is performed utilizing pheromone trails, which ants store at whatever point they 
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travel, as a shape of indirect communication. ACO is additionally created to solve discrete combinatorial 

optimization problems such as the travelling salesman problem (TSP). A consideration lot of bioinformatics 

complications like the sequence alignment, gene mapping and feature selection of the gene expression data are 

much like TSP. This causes ACO reasonable for large-scale bioinformatics optimization problems [19].  

The primary thought is to build the problem to be comprehended as a search for an ideal path in a weighted 

graph, known as construction graph, and to apply synthetic ants to look for excellent paths. A key point in the 

improvement of any ACO algorithm is to decide the fitness feature based totally on which the components of a 

problem‘s construction graph will be merited with an abnormal state pheromone path, and to decide how ants 

will abuse these potential components when constructing new solutions. 

Some weak point of current adaptation of ACO are as follows: 1) Space complexity of enfolding pheromone in 

core memory is extraordinary and the most outstanding current solution to resolve this trouble is utilizing 

candidate pheromone values which is excessively unyielding in numerous conditions. 2) Recent variants of 

ACO utilize the local search procedures in their standard algorithm; however they are not ready to utilize 

pheromone information to work all the more effectively. 3) The time complexity of choosing next move is great. 

Therefore, Ismkhan [23] expressed these weaknesses with more subtleties and furthermore proposes some new 

and successful techniques to dispense with these disadvantages. These strategies improve the overall 

performance of ACO and empower it to apply to expansive scale problems. 

3.3. Artificial Bee Colony (ABC) 

ABC is one of the most recent swarm search optimization algorithms. It was first proposed by Dervis Karaboga 

in 2005 [24]. It is an optimization algorithm inspired by the intelligent foraging conduct of a honey bee swarm 

for locating an ultimate solution. This algorithm is professed to be as basic and easy to implement as PSO and 

DE [25]. The ABC consists of three groups of bees which might be the onlooker bees, scouts and employed 

bees. 

Every one of these bees has different function appointed to them so as to finish the algorithm’s procedure. The 

employed bees recognize a food source and retain the locality of that food source in their recollections. The 

employed bees share the information with onlooker bees which remain within the hive. The onlooker bee 

accepts the information of the food source from the employed bee in the hive. From that point forward, one of 

the food sources is chosen to assemble the nectar. The scout bees find new food sources in the encompassing 

territory of hive and the new nectar. When a passerby onlooker bee and scout bee choice a food source they turn 

into employed. The following equation (3) is used to calculate the likelihood estimation of the food source.  

𝑃𝑃𝑖𝑖 =  𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖
∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑁𝑁
𝑛𝑛=1

      (3) 

where N denotes the number of food sources and   represents the fitness value of the solution. On the opposite 

hand, an employed bee is turned into a scout or onlooker bee while their food sources grow to be empty. A new 

candidate of food source is calculated by applying equation (4):  
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𝑥𝑥𝑖𝑖
𝑗𝑗 =  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (0,1) ∗ (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 −  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗 )     (4) 

where  𝑥𝑥𝑖𝑖
𝑗𝑗 represents the location of the food source and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗  and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 represents the lower bound and upper 

bound of the j dimension respectively. The feasible explanation to a problem below deliberation is signified via 

the food source in that algorithm in an iterative search procedure. In ABC, exploration is accomplished by using 

scout bees where the employed and onlooker bees are accountable for exploitation [26]. 

Comparing ABC algorithm with PSO and ACO methods, it carries the advantages of fast convergence, high 

flexibility, and strong robustness. 

4. Feature Selection using SI in high dimensional classification 

In this sector, the related works in feature selection using swarm intelligence on high dimensional classification 

is studied. As stated by means of the swarm search algorithms applied, the related works reviewed are grouped. 

4.1. PSO used in Classification 

Current research has revealed that PSO is a capable method to feature selection. However, it also certainly gets 

stuck in local optima, especially for gene selection problems with a large search space. Therefore, various 

approaches have been proposed to solve this problem.   

In [27], hamming distance is applied compared to normal Euclidian distance measurement. Two different 

objects may look-alike in an enormous feature space; therefore, the work claimed that Euclidian distance might 

not be suitable for high dimensional data. The important features subset was selected by the velocity update of 

particle in binary PSO framework (HDBPSO). In this work, the velocity is updated by the adapted Hamming 

distance as a proximity measure. The results are evaluated based on validity indices and classification 

accuracies. Binary data were used in the proposed method for the comparison with GA and multi-objective GA. 

The results shows HDBPSO performs excellently as compared to others. 

Yiyuan Chen and his colleagues [3] suggested a confidence based and cost effective feature selection (CCFS) 

technique using binary PSO. In CCFS, two novel points are performed: feature confidence and feature cost. 

Among these two ideas, feature confidence is employed to update the position of particle and enhance the 

performance of the FS. Feature cost is integrated into the scheme of the fitness function. The results through 

experiments on Lung Cancer dataset of the proposed method is compared with three different filter methods 

such as PCFS, InfoGain and CFS and wrapper methods such as BestFirst, GSFS and GSBS methods. The 

experimental results demonstrated that the proposed CCFS method points to improve the learning accuracy rate 

and decrease the number of selected features and the total costs of them. 

Binh et. al [28] developed a new hybrid FS algorithm in a single evolutionary process to attain smaller feature 

subsets with well accuracy in a shorter time. In this approach, PSO based local search heuristic considering 

symmetric uncertainty measure is proposed to enhance the solution and a new hybrid fitness function is applied 

to calculate the goodness of the chosen features. The experimentation results on eight high dimensional datasets 
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demonstrated that the lesser feature subsets is obtained with considerably better classification accuracy than the 

original feature sets. The proposed hybrid FS algorithm nominated more related features in a shorter time with a 

reduced computational cost when compared to other PSO based FS methods. Additionally, the authors also 

suggested that the balance among the exploration and exploitation in PSO search towards improving the 

performance of PSO in FS on high dimensional data. 

Threshold Controlled Binary Particle Swarm Optimization (TC-BPSO) along with Multi-Class Support Vector 

Machine (MC-SVM) is developed in [29] to make the most of the classification accuracy at the cost of least 

possible selected features. For the selection features, TC-BPSO is used while the MC-SVM is utilized to 

compute the classification accuracy. The gold of this FS algorithm is to eliminate the irrelevance and repetitive 

features in order to decrease the feature size. The results gained through experimentations on ten different 

datasets showed that the suggested method overtakes in all cases such as feature selection, accuracy and 

computational complexity. Feature selected through the proposed method are computationally faster than the 

Conventional BPSO along with the existing methods. 

4.2. ACO used in Classification 

Ant algorithms are easy to implement and cover wide range of applications [22], but their performance 

dramatically decreases in dealing with large-scale problems. The proposed algorithm in [30] is a new hybrid 

method, which combines ACO based local search with symmetric uncertainty measure to find the optimal 

subset of the features. The main gold of this hybrid FS algorithm is to evaluate the best features. 

Experimentation results on the large-scale gene expression datasets showed that the proposed method ACO-LS 

performs better when compared with existing methods; these results are measured in terms of prediction 

accuracy, smaller feature size and effectiveness. Additionally, the approach also considered the balance among 

local and genetic search towards improving the search quality and effectiveness of ACO-LS. 

A hybrid Ant Bee Algorithm (ABA) which combines Ant Colony Optimization (ACO) with Artificial Bee 

Colony (ABC) algorithm in fuzzy expert system for encoding the solution variables using a modified form of 

representation was introduced in [31]. The optimal rule set of the combinatorial optimization is formed by the 

implementation of ACO in proposed work. The representation of the membership function as continuous 

number is done by ABC. This hybrid method is implemented on several gene expression data sets which include 

Receiver Operating Characteristic (ROC) analysis have been done to every datasets. To compare the 

performance of proposed approach with other algorithms, the value of area under ROC curve is used. The 

results obtained experiments is reported to have the best value when compared to BCGA, RCGA, PSO and GA. 

Amirreza Rouhi and his colleagues [32] developed a hybrid method based on binary ant colony algorithm 

(BACO) to reduce the dimensionality of features by combining number of filter methods and then Advanced 

BACO meta-heuristic is applied to the reduced feature sets to select the best feature subset. Five well-known 

high-dimensional microarray datasets was implemented to measure the performance of the proposed method. In 

this paper, classification error rate and number of selected features as the measures of evaluating and comparing 

the performance of tested algorithms. The results obtained by Naïve Bayes classifier demonstrated the 
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effectiveness of the proposed method for high dimensional microarray data. 

4.3. ABC used in Classification 

ABC algorithm was selected for gene selection problems in various works. Its prevalence is also contributed by 

its rare parameters contrasted with different optimization algorithms. ABC algorithm was utilized to discover a 

subset of genes which is then used to train distinctive Artificial Neural Network (ANN); Multilayer Perceptron 

(MLP), Radial Basis Function Neural Network (RBF) and SVM [19]. 

In [33] M. S. Uzer and his colleagues proposed a hybrid approach that uses the artificial bee colony (ABC) 

algorithm for feature selection to select the related features in a shorter time and to reduce the dimension of the 

feature vector and then support vector machines (SVM) is used for classification to determine the accuracy rate. 

The main purpose of this paper is to test the effect of elimination of the unimportant and redundant features of 

the datasets to enhance the classification accuracy.  𝑘𝑘-fold cross-validation was used for the classifier reliability 

improvement. For the diagnosis of hepatitis, liver disorders, and diabetes datasets from the UCI database, the 

proposed system reached classification accuracies of 94.92%, 74.81%, and 79.29%, respectively. 

Minimum Redundancy Maximum Relevance (mRMR) method joined with ABC algorithm (mRMR-ABC) is 

presented in [34]. mRMR is employed to evaluate the relevancy and redundancy of features used for continuous 

and discrete datasets. This technique can be determined the best features set and simplify the classifier to be 

trained correctly. Fitness value of the ABC algorithm applied in this effort can be defined by SVM classifier for 

classification accuracy. The experimental results showed that the suggested approach achieves enhanced 

performance and superior improvement using small number of prognostic genes when verified using microarray 

datasets and compared to formerly recommended approaches.  

Beatriz and his colleagues [35] proposed a method for classifying DNA array. In this proposed approach, firstly, 

swarm intelligence algorithm is performed on feature selection process to find the subset of attribute (genes). 

After that, different ANNs are trained with selected feature subsets. Lastly, four different datasets is 

demonstrated to valid the accuracy and test the relevance of features to correctly classify the data. Through 

several experiments, ANN attained better results contrast with the MLP, SVM and the RBF neural networks 

touched with the distance classifier. Moreover, it is established that the suggested method is capable of choosing 

the right feature sets to identify, forecast and classify a certain disease with better accuracy. In [36], a multi-

objective ranking binary artificial bee colony algorithm based on decomposition (MORBABC/D) method is 

planned to select the optimal subset of feature from the original high dimensional data. Fisher-Markov selector 

is applied to take a fixed number of microarray data. After that, a novel binary update approach is suggested to 

trade off the exploration and exploitation facility. Finally, the proposed method is performed for selection of 

feature, and exciting learning machine is worked as the classifier with ten-fold cross-validation techniques. The 

proposed approach is evaluated on eight microarray dataset in order to show the effectiveness and efficiency of 

the algorithm. The results through experiments presented that the proposed approach can effectively make 

simpler feature selection by selecting a smaller number of attributes desired and provide advanced classification 

accuracy matched with other state-of-the-art algorithms. 
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4.4. High Dimensional Classification in FS 

In high dimensional classification tasks, instances belong to one of several classes such as cancer dataset or 

normal dataset, the main objective is to classify these instances and produce classified instances based on related 

measurements. Training classifiers on such high-dimensionality small-instance sets is a challenging problem 

that has received an increasing attention from the research community. To address this challenge, feature 

selection as a pre-processing step is performed and followed it by applying a classification algorithm that trains 

model complexity through regularization [37]. Feature selection technique improves the performance of large 

dimensionality dataset in terms of evaluation measures such as accuracy, stability, and specificity. In addition, 

the classification performance may rely on the performance of the feature selection process.  Therefore, a 

comparative study is made to analyze the state-of-arts research experiments for this task. Table (1) illustrates the 

comparative study of swarm intelligence algorithms for feature selection on high dimensional datasets that have 

been used in the literatures.  In brief, although PSO or other SI techniques have proven some achievement on 

solving high-dimensional classification for feature selection, there are still some potential restrictions, which 

include time-consuming and stagnation into local optima. Meanwhile, for the reason that many high-

dimensional datasets, particularly gene expression data, normally have a few number of instances, n-fold cross 

validation is required. How to carry out n-fold cross validation in multiple runs is tough to design and 

computationally costly. In this way, investigating a powerful and efficient feature selection technique for high-

dimensional data and the impact of feature selection bias are as yet open issues [38]. 

5. Conclusion and Recommendation 

This survey shows a study on different existing feature selection techniques that have been applied on high 

dimensional classification. Moreover, the critical problem of swarm intelligence based feature selection 

approach for high dimensional classification found in literature is reviewed. Basic concept of feature selection 

and the comparative study of different meta-heuristic approaches used in feature selection process are discussed 

as well. From the stated feature selection techniques above, swarm search algorithms is more suitable for better 

performance specifically in high dimensional classification, which is considered as an important portion that 

may affect any learning model. The study shows that feature selection as a critical step in data mining and 

machine learning applications and it provides an effective way to analyze the high dimensional data by reducing 

not relevance and redundant data. However, the selection of the correct FS algorithm constitutes an enormous 

challenge for machine learning problems. To address this problem, many FS approaches have been suggested in 

recent year. In this paper, the usage of PSO, ABC, ACO meta-heuristic algorithms for high dimensional datasets 

is presented. Based on the related works in feature selection, the swarm intelligence algorithms gave to enhance 

the classification accuracy with the smaller number of selected attributes for handling various types of high 

dimensional data for classification especially biomedical data. According to the comparison table, meta-

heuristic search algorithms like PSO, ACO, etc., is mostly used for feature selection method to search large 

space. This study only acquires from the previous literatures and also considerately clarifies the feature selection 

methods that most applied for high dimensional classification. However, this paper does not emphasize about 

the embedded based feature selection techniques which are used on high dimensional classification. 
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Table 1: A comparative study on feature section methods for high dimensional classification using swarm 

intelligence 

Sr. 
No. Year Methods used Dataset used Performance Evaluation 

1. 2013 ACO as feature selection 
method based on rough set 
theory (RST) 

Breast cancer 
 

Proposed model give the low 
number of informative genes 

2. 2013 Hybrid system between 
swarm intelligence algorithm 
ACO as a feature selection 
method and SVM as a 
classifier 

Colon dataset, CNS dataset, Lung 
cancer dataset as a binary class 
samples and Glioma dataset as a 
multiclass dataset 

By trying different number of 
features in many trials. It improves 
the SVM classifier in different 
datasets. 

3. 2014 Hybrid system between 
decision tree (DT) as a 
classifier and particle swarm 
optimization (PSO) as a gene 
selection method 

Brain tumor, leukemia, SRBCT, 
LUNG cancer, prostate tumor 

Performance of PSODT proves that 
it can earn better percentage in 
classifying gene related to different 
kinds of cancer. 

4. 2014 PSO approach with both local 
search and reset globalbest 
(PSO-LSRG) as a feature 
selection and KNN with 
LOOCV as a classifier 

DLBCL, 9 Tumors, Prostate 
Tumors, 11 Tumors and Lung 
cancer [41] 

The PSO based FS approach 
significantly decreased the size of 
the feature set, but the feature 
numbers are still large. 

5. 2015 Genetic Bee Colony (GBC) 
algorithm: to find the optimal 
feasible solution in order to 
optimized the accuracy of 
SVM classifier 

Colon, Leukemia1, Lung, 
SRBCT, Lymphoma, Leukemia2 

In both binary and multi-class 
cancer classification, the proposed 
algorithm is a potential approach 
for explaining the dimensional 
reduction problem.  

6. 2015 Hybrid wrapper-filter feature 
selection method based on a 
Binary Differential Evolution 
(BDE) algorithm with a rank-
based filter FS method. 

Six well-known datasets from 
Kent Ridge Biomedical Dataset 
Public Repository.  
[39 ] 

The proposed hybrid method gives 
the facility to successfully reduce 
the original attribute subset size by 
more than 99% and displays the 
strength as well as the capability of 
the methods to increase the 
accuracy rate. 

7. 2016 Improved shuffled frog 
leaping algorithm (ISFLA) 
for feature selection and 1-
nearest neighbor (1-NN) as a 
evaluator 

Nine well-known biomedical data 
from [41] 
 

The improved algorithm effectively 
reduces the number of dataset 
features whilst simultaneously 
achieving better classification 
accuracy. 

8. 2016 Chaotic binary particle 
swarm optimization and 
Local search (CBPSOL) for 
feature subset selection and 
K-nearest neighbors for 
classification 

Eight datasets from UCI 
repository [40] 

Proposed algorithm has a robust 
search ability in the problem space 
and can capably catch smaller 
feature subsets in high-dimensional 
synthetic datasets 

9. 2017 Support Vector Machines 
recursive feature elimination 
(SVM-RFE) as a  prefilter 
step and Binary Dragon Fly 
(BDF) as a feature selection 
method 

Six DNA microarray datasets 
from Kent Ridge (KR) Bio-
Medical Dataset Repository [ 39] 

The proposed model is efficient 
and provides a higher classification 
accuracy rate using a reduced 
number of genes. 

10. 2017 Hybrid FS approach combine 
with Advanced Binary Ant 
Colony Optimization 
(ABACOH) and improved 
binary gravitational search 
algorithm (IBGSA) for 

Lung Cancer, Leukemia, Colon, 
SRBCT, Prostate 

Proposed model yield 81.43%, 
96.50%, 94.11%, 92.94% and 
94.26%, for the five datasets. 
Higher than other techniques. 
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feature selection 

11. 2018 Improved Binary 
Gravitational Search 
Algorithm (IBSGA) as a 
feature selection process and 
k-Nearest Neighbor as a 
classifier 

Lung Cancer, Leukemia, 
DLBCL, SRBCT, Prostate 

The proposed approach might be a 
suitable solution for feature 
selection for high-dimensional data, 
especially micro-array data and 
obtain better results. 
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