

82

International Journal of Computer (IJC)
ISSN 2307-4523 (Print & Online)

© Global Society of Scientific Research and Researchers

http://ijcjournal.org/

Performance and Security of Group Signature in

Wireless Networks

Joshua J. Toma*, Prof Boniface. K. Aleseb, Dr. Aderonke F. Thompsonc,

Dr. Nlerum P. Anebod

a,b,cDepartment of Computer Science, Federal University of Technology, Akure, Nigeria
dDepartment of Computer Science, Federal University, Otuoke, Nigeria

aEmail: tomjoshua.tom@gmail.com
bEmail: bkalese@futa.edu.ng

cEmail: afthompson@futa.edu.ng
dEmail: nlerumpa@fuotuoke.edu.ng

Abstract

A Group signature protocol is a cryptographic scheme that decouples a user identity and location from

verification procedure during authentication. In a group signature scheme, a user is allowed to generate

signatures on behalf of other group members but identity and location information of the signer is not known by

a verifier. This ensures privacy, authentication and unlinkability of users. Although group signature is expensive

to implement, its existential anonymity, non-repudiation and untraceablility properties make it attractive

especially for resources-constrained devices in wireless network. A general group signature scheme usually

contains six basic phases: setup (or key generation), join, message signing (or signature generation), signature

verification, open and user revocation. In this paper, an evaluation of the performance of group signature based

on three of the phases mentioned above is considered and its security in wireless networks examined. The key

generation, signing and verification algorithms are implemented in Java 8. A proof of security of group signature

by implication is also presented.

 Keywords: Wireless network; authentication; security; anonymity; untraceability; group signature.

1. Introduction

A Group Signature (GS) scheme is a method for allowing a member of a group to anonymously sign a message

on behalf of the group. The concept was first introduced by David Chaum and Eugene van Heyst [1] in 1991.

* Corresponding author.

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

83

Group signatures can be used in many privacy-preserving services and authentication schemes. Group

signatures can be understood as a subset of attribute authentication systems which contain only one attribute

representing a membership in a group. A user who is a member of a group can sign a message on behalf of the

group and send the message anonymously to a verifier. According to [1], a secure group signature scheme

should satisfy two basic requirements, anonymity and traceability. Anonymity stipulates that the identity of the

signer should remain unknown to anyone verifying the signature including other group elements. On the other

hand, traceability requires that there should be an entity, called the group manager, capable of revoking the

anonymity of signer whenever necessary. Elliptic Curve Digital Signature Algorithm (ECDSA) is a variant of

Digital Signature Algorithm (DSA) used extensively in a vast area of applications and across many different

fields to verify the authenticity of messages and confirm that they have not been altered in transmission.

ECDSA is a version of DSA using elliptic curves. ECDSA has been proven to be more effective than using

DSA as it provides the same security with a smaller key size [2]. The two schemes (GS and ECDSA) are public

key algorithms. Public key cryptography provides two keys for authentication. These keys are public key and

private key. In terms of digital signatures (including ECDSA), the private key is used for creating signatures and

the public key is copied and handed out to validate signatures. For GS, the group members each have

differentiated private keys used for signing and a common group public key for verifying the signatures made

available to all verifiers. Applications that benefit from group signatures are: vehicle safety communications

(VSC) [12] system to preserve the privacy of its users, anonymous attestation (e.g. DAA-Direct Anonymous

Attestation [13]), bidding [6], electronic cash [14], anonymous fingerprinting [15] etc.

1.1. Properties of a Group Signature Scheme

Group signature schemes usually provide the following properties:

• Unforgeability - only an unrevoked group member can create a valid signature on behalf of the group.

• Anonymity - a verifier is not able to determine the identity of a signer.

• Complete anonymity - if an attacker obtains a valid signature and knows gpk and all keys of group

members’ gsk[i], he is not able to determine the identity of a signer.

• Traceability - all members can be tracked by the group manager or the revocation manager by

member’s signed message.

• Untraceability - any member cannot be tracked by a verifier and/or other group members by his/her

signed messages.

• Unlinkability - a verifier and other members are not able to link two signatures which have been signed

by one member of the group.

• Coalition-resistance - it is impossible to create a valid signature by a subgroup of users.

• Exculpability - even group manager is not able to create the valid signature of a group member.

• Correctness - every correct signature of a group member has to be always accepted during verification.

• Revocation - a revoked member is not able to create valid signatures on behalf of the group.

• Differentiation of group members - all members of a group must have a different gsk[i].

• Immediate-revocation - if a group member is revoked, his capability of creating the group signatures is

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

84

immediately disabled.

1.2. Security Assumptions of Group Signature

One of the most critical requirements in cryptographic research is identifying (strongest and/or weakest)

assumptions required for the construction of secure primitives. This helps to close the gap between which

primitive is sufficient and what is necessary to build a given cryptographic function such as a group signature to

determine the exact conditions that must be met for them to exist.

Several implications and separations are known in literature for primitives such as standard signatures (DSA,

ECDSA, RSA, etc.) and public-key encryption, very little is known for group signatures despite the intuition

that the latter appears to be a stronger primitive than standard signatures [4].

Apart from the original work of [1], many other schemes have been proposed in the literature (e.g., [5, 6, 7]).

Each of these has its own set of security properties and requirements. Recently, a formal model of security for

group signatures was put forward [8], which integrated the many sets of security requirements into two basic

categories, called full-anonymity and full-traceability.

These two basic properties were shown to imply in the case of static groups all of the existing security properties

of previous scheme. Formal definitions for dynamic groups were also provided in subsequent works [9, 10]. The

significance of such formal definitions includes concrete and simpler proofs of security (only two properties

need be satisfied) and better understanding a group signature scheme being secure with its implications. Another

benefit is that precise relations between group signatures and other cryptographic primitives can be drawn. The

implications proven in [4] are only possible in the presence of such formal models of security. In this paper, we

show that the group signature cryptographic primitive is secure by implied security of the constituent primitives

used to build the group signature scheme.

2. Protocol Specification

The group manager computes initialization parameters. The parameters include

(i) H selects a random number γ ∈ ℤ and computes a group manager private key (gmpk) computed as:

gmsk = γ (1)

(ii) The group manager public key (gmpk) is given as,

gmpk = (g1, g2, h1, h2, … hT, w) (2)

where given Fq a finite field with an elliptic curve E, G1 a multiplicative cyclic group of prime order p and G2 a

multiplicative group of exponent p, with some power of p as its order, g1 is a generator of G1 and g2 is an

order-p element of G2. The elements g1 and g2 will be selected at random as part of system setup. h1, h2, … hT

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

85

represent randomly selected hj ∈ G for each interval j and w is given as w = g2γ.

(iii) H uses the above computed parameters to generate a vector of N user’s secret keys usk and a vector of N x

T revocation tokens (urt) for each registered user with current time intervals to ensure unlinkability as follows:

usk = (usk[1], usk[2], …, usk[N]) (3)

urt = (urt[1][1],…, urt[1][T],…, urt[N][T]) (4)

(iv) The user secret key for N users is given as:

usk[i] = (𝐴𝐴𝑖𝑖, 𝑥𝑥𝑖𝑖) (5)

Where Ai = 𝑔𝑔11/(𝛾𝛾+𝑥𝑥𝑖𝑖) for all i ∈ [1,𝑁𝑁] and 𝑥𝑥𝑖𝑖 ∈ ℤ is selected randomly.

(v) Next, randomly selected ℎ𝑗𝑗 ∈ [1,𝑇𝑇] is used to compute the revocation token at time interval j of 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 with

secret key (𝐴𝐴𝑖𝑖, 𝑥𝑥𝑖𝑖) as:

Bij = hj
xi for all i ∈ [1, N] and j ∈ ℕ (6)

(vi) H computes an alias for each registered user intending to roam using secret splitting mechanism from:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑈𝑈 = (𝑤𝑤||𝐼𝐼𝐼𝐼𝐻𝐻) ⊕ 𝐼𝐼𝐼𝐼𝑈𝑈 ⊕ 𝐼𝐼𝐼𝐼𝐻𝐻 (7)

Where IDH is the group manager identity, IDU is the identity of the user, U and ⊕ is an Exclusive-Or operator.

In the authentication phase a group signature with revocation support is illustrated as follows:

(i) User selects a random number, 𝑁𝑁𝑈𝑈 and computes 𝑁𝑁𝑈𝑈𝐺𝐺 (we assume 𝐺𝐺1 = 𝐺𝐺2 = 𝐺𝐺, from bilinear map) and

sends (𝐼𝐼𝐼𝐼𝐻𝐻 , 𝑁𝑁𝑈𝑈𝐺𝐺) to 𝑉𝑉.

(ii) Verifier, 𝑉𝑉 selects a random number NV, computes a session key used between 𝑉𝑉 and U as follows

k𝑉𝑉U = NV(𝑁𝑁𝑈𝑈𝐺𝐺) (8)

and sends NV to U.

(iii) U computes a group signature pkV1 by running group signature 𝜎𝜎 by executing the signing algorithm,

G.Sig(gmpk, gsk[i], j, alias, NV1G) and use it to sign a message sent to V.

It then computes a temporary alias by encrypting 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑈𝑈 given to it by group manager using its session key

𝑘𝑘𝑈𝑈𝑉𝑉. Then it sends (alias, σu) to 𝑉𝑉. Otherwise, if the signature σV1 = 0, connection rejected.

(iv) 𝑉𝑉 verifies the signature from U with the group manager public key, gmpk by running the verification

algorithm, G.Ver(gmpk, usk[i], j, alias, 𝑁𝑁𝑉𝑉G, 𝜎𝜎𝑢𝑢).

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

86

𝜎𝜎U = �
1, 𝜎𝜎 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣, allow 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐

0, 𝑐𝑐𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑤𝑤𝑎𝑎𝑢𝑢𝑢𝑢 disallow
 𝑉𝑉 allows connection if 𝜎𝜎U =1 and disallow otherwise.

3. Group Signature Algorithms

3.1. Key Generation Algorithm

This algorithm takes as input integers 𝑁𝑁,𝑇𝑇 ∈ ℕ indicating the number of subscribers (users) and the number of

time intervals, respectively.

VLR-GS.KenGen (N, T)

select randomly a generator 𝑔𝑔2 ∈ G2

set 𝑔𝑔1 = 𝜓𝜓(𝑔𝑔2)

select randomly γ ∈ ℤ𝑝𝑝

set w = 𝑔𝑔2𝛾𝛾

set hsk = 𝛾𝛾

for i = 0 to N – 1 // generate an SDH tuple (𝐴𝐴𝑖𝑖 , 𝑥𝑥𝑖𝑖)

select randomly 𝑥𝑥𝑖𝑖 ∈ ℤ // 𝑥𝑥𝑖𝑖 + γ must be nonzero

set 𝐴𝐴𝑖𝑖 = 𝑔𝑔11/(𝛾𝛾+𝑥𝑥𝑖𝑖)

set 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑖𝑖 = (𝑤𝑤||IDH) ⊕ ID𝑖𝑖 ⊕ IDH)

for j = 0 to T – 1 // generate time intervals for useri

select ℎ𝑗𝑗 ∈ G // to ensure backward unlinkability

set 𝐵𝐵𝑖𝑖𝑗𝑗 = ℎ𝑗𝑗
𝑥𝑥𝑖𝑖

set musk[i] = (𝐴𝐴𝑖𝑖, 𝑥𝑥𝑖𝑖)

set murt[i][j] = 𝐵𝐵𝑖𝑖𝑗𝑗

end for

end for

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

87

set hspk = (𝑔𝑔1, 𝑔𝑔2, ℎ1, …, ℎ𝑇𝑇, w)

end

3.2. Signing Algorithm

The inputs to this signing algorithm are a home server public key, hspk = (𝑔𝑔1, 𝑔𝑔2, ℎ1, …, ℎ𝑇𝑇, w), the current

time interval j, the mobile user secret key, musk[i] = (𝐴𝐴𝑖𝑖, 𝑥𝑥𝑖𝑖) and a signed message M ∈ {0, 1}* assumed to

include all time intervals j in order to bind the signature to the interval.

VLR-GS.Sig (hspk, j, usk[i], M)

select randomly a generator 𝑔𝑔2 ∈ G2

set 𝑔𝑔1 = 𝜓𝜓(𝑔𝑔2)

compute SPK 𝑉𝑉

select random number 𝛼𝛼,𝛽𝛽, 𝛿𝛿 ∈ ℤ𝑝𝑝

set 𝜀𝜀 = 𝑥𝑥𝑖𝑖𝛼𝛼, 𝜁𝜁 = 𝑥𝑥𝑖𝑖𝛽𝛽, 𝜂𝜂 = 𝑥𝑥𝑖𝑖𝛿𝛿

compute T1 = 𝐴𝐴𝑖𝑖𝑔𝑔2𝛼𝛼 and T2 = 𝑔𝑔1𝛼𝛼𝑔𝑔2
𝛽𝛽, 𝑇𝑇3 = 𝑢𝑢(𝑔𝑔1

𝑥𝑥𝑖𝑖 , ℎ𝑗𝑗)𝛿𝛿 and T4 = 𝑔𝑔1𝛿𝛿

select 𝑢𝑢𝛼𝛼 , 𝑢𝑢𝛽𝛽 , 𝑢𝑢𝛿𝛿 , 𝑢𝑢𝑥𝑥𝑖𝑖 , 𝑢𝑢𝜀𝜀 , 𝑢𝑢𝜁𝜁 , 𝑢𝑢𝜂𝜂 ∈ ℤ𝑝𝑝 //blinding factors to compute SPK

compute 𝑅𝑅1 = 𝑔𝑔1
𝑟𝑟𝛼𝛼 𝑔𝑔2

𝑟𝑟𝛽𝛽, 𝑅𝑅2 = 𝑇𝑇2
𝑟𝑟𝑥𝑥𝑖𝑖 (1

𝑔𝑔1
)𝑟𝑟𝜀𝜀(1

𝑔𝑔2
)𝑟𝑟𝜁𝜁,

compute 𝑅𝑅3 = � 1
𝑒𝑒(𝑇𝑇1,𝑔𝑔1)

�
𝑟𝑟𝑥𝑥𝑖𝑖 𝑢𝑢(𝑔𝑔2,𝑤𝑤)𝑟𝑟𝛼𝛼𝑢𝑢(𝑔𝑔1,𝑔𝑔2)𝑟𝑟𝜀𝜀

compute 𝑅𝑅4 = 𝑢𝑢(𝑔𝑔1, ℎ𝑗𝑗)𝑟𝑟𝜂𝜂 , 𝑅𝑅5 = 𝑔𝑔1
𝑟𝑟𝛿𝛿

compute 𝑅𝑅6 = 𝑇𝑇4
𝑟𝑟𝑥𝑥𝑖𝑖 (1

𝑔𝑔1
)𝑟𝑟𝜂𝜂

compute c = 𝐻𝐻(𝑔𝑔𝑔𝑔𝑘𝑘, 𝑗𝑗,𝑀𝑀, 𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇3, 𝑇𝑇4, 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3, 𝑅𝑅4, 𝑅𝑅5, 𝑅𝑅6)

compute 𝑢𝑢𝛼𝛼 = 𝑢𝑢𝛼𝛼 + 𝑐𝑐𝛼𝛼, 𝑢𝑢𝛽𝛽 = 𝑢𝑢𝛽𝛽 + 𝑐𝑐𝛽𝛽, 𝑢𝑢𝛿𝛿 = 𝑢𝑢𝛿𝛿+ c𝛿𝛿 , 𝑢𝑢𝑥𝑥𝑖𝑖 = 𝑢𝑢𝑥𝑥𝑖𝑖 + 𝑐𝑐𝑥𝑥𝑖𝑖

compute 𝑢𝑢𝜀𝜀 = 𝑢𝑢𝜀𝜀 + 𝑐𝑐𝜀𝜀, 𝑢𝑢𝜁𝜁 = 𝑢𝑢𝜁𝜁 + 𝑐𝑐𝜁𝜁, 𝑢𝑢𝜂𝜂 = 𝑢𝑢𝜂𝜂+ c𝜂𝜂

compute 𝜎𝜎 = (𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇3, 𝑇𝑇4, c, 𝑢𝑢𝛼𝛼 , 𝑢𝑢𝛽𝛽, 𝑢𝑢𝛿𝛿 𝑢𝑢𝑥𝑥𝑖𝑖 , 𝑢𝑢𝜀𝜀 , 𝑢𝑢𝜁𝜁, 𝑢𝑢𝜂𝜂)

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

88

output 𝜎𝜎 // as the signature

end

3.3. Verification Algorithm

The input to this verification algorithm include a home server public key gpk = (𝒈𝒈𝟏𝟏, 𝒈𝒈𝟐𝟐, 𝒉𝒉𝟏𝟏, …, 𝒉𝒉𝑻𝑻, w), the

current time interval j, a revocation list 𝑹𝑹𝑹𝑹𝒋𝒋 that consists of murt[i][j] for all revoked i at the time interval j and a

signature 𝝈𝝈 = (𝑻𝑻𝟏𝟏, 𝑻𝑻𝟐𝟐, 𝑻𝑻𝟑𝟑, 𝑻𝑻𝟒𝟒, c, 𝒔𝒔𝜶𝜶 , 𝒔𝒔𝜷𝜷, 𝒔𝒔𝜹𝜹 𝒔𝒔𝒙𝒙𝒊𝒊 , 𝒔𝒔𝜺𝜺 , 𝒔𝒔𝜻𝜻, 𝒔𝒔𝜼𝜼).

VLR-GS.Ver(gpk, RLj , 𝜎𝜎 , M).

select randomly a generator 𝑔𝑔2 ∈ G2

set 𝑔𝑔1 = 𝜓𝜓(𝑔𝑔2)

check SPK 𝑉𝑉

set 𝑅𝑅1′ = 𝑔𝑔1
𝑠𝑠𝛼𝛼 𝑔𝑔2

𝑠𝑠𝛽𝛽 (1/ T2)𝑐𝑐 // Recomputed 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3

set 𝑅𝑅2′ = 𝑇𝑇2
𝑠𝑠𝑥𝑥𝑖𝑖 (1/g1)𝑠𝑠𝜀𝜀 (1/g2)𝑠𝑠𝜁𝜁

set 𝑅𝑅3′ = � 1
𝑒𝑒(𝑇𝑇1,𝑔𝑔1)

�
𝑠𝑠𝑥𝑥𝑖𝑖 𝑢𝑢(𝑔𝑔2,𝑤𝑤)𝑠𝑠𝛼𝛼𝑢𝑢(𝑔𝑔1,𝑔𝑔2)𝑠𝑠𝜀𝜀 (� 1

𝑒𝑒(𝑇𝑇1,𝑔𝑔1)
� 𝑢𝑢(𝑔𝑔1,𝑔𝑔1))𝑐𝑐

set 𝑅𝑅4′ = 𝑢𝑢(𝑔𝑔1, ℎ𝑗𝑗)𝑠𝑠𝜂𝜂(1/ T3)𝑐𝑐

set 𝑅𝑅5′ = 𝑔𝑔1
𝑠𝑠𝛿𝛿(1/ T4)𝑐𝑐

set 𝑅𝑅6′ = 𝑇𝑇4
𝑠𝑠𝑥𝑥𝑖𝑖 (1/g1)𝑠𝑠𝜂𝜂

if c = 𝐻𝐻(𝑔𝑔𝑔𝑔𝑘𝑘, 𝑗𝑗,𝑀𝑀, 𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇3, 𝑇𝑇4,𝑅𝑅1′ ,𝑅𝑅2′ ,𝑅𝑅3′ ,𝑅𝑅4′ ,𝑅𝑅5′ ,𝑅𝑅6′)// compare with c in 𝜎𝜎

Output “signature valid” else “signature invalid”

for j = 1 to T //revocation check in RLj

if 𝑇𝑇3 ≠ 𝑢𝑢(𝑇𝑇4,𝐵𝐵𝑖𝑖𝑗𝑗)

output “user not revoked”

allow access

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

89

else

output “user revoked”

deny access

endif

end for

end

4. ECDSA Scheme Algorithms

4.1. ECDSA Key Pair Generation Algorithm

ECDSA.KeyGen

Input G, n // base point on E\𝔽𝔽q, n is order of G

Randomly select d ∈ ℤ𝑝𝑝 in the interval [1, n -1]

compute Q = dG

set public key = Q

set private key = d

output public key, private key

end

4.2. ECDSA Signature Generation Algorithm

ECDSA.SignGen

Input: d, G, n, hash function H, and message m

Output: Signature (r; s)

compute random integer k, within 1 ≤ 𝑘𝑘 ≤ 𝑐𝑐 − 1

compute 𝑘𝑘𝐺𝐺 = (𝑥𝑥1,𝑦𝑦1)

convert 𝑥𝑥1 to an integer 𝑥𝑥1′

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

90

compute r = 𝑥𝑥1′ mod n

If r = 0 then go to step 1

compute H(m) and convert this bit string to an integer e

compute s = 𝑘𝑘−1(e + dr) mod n.

If s = 0 go to step 1

output signature = (r, s) end

4.3. ECDSA Signature Verification Algorithm

ECDSA.Verify

Input: (r; s), m, n, e, G, Q, and hash function H

Output: Accept or reject signature (r; s)

verify r and s are integers in the interval [1, n - 1]

compute H(m) and convert bit string to an integer e

compute w = 𝑢𝑢−1 mod n

compute 𝑢𝑢1 = ew mod n and 𝑢𝑢2 = rw mod n

compute X = 𝑢𝑢1G + 𝑢𝑢2Q

If X = 𝑂𝑂(the point at infinity), reject the signature.

Otherwise, convert 𝑥𝑥1of X to an integer 𝑥𝑥1′

compute 𝑣𝑣 = 𝑥𝑥1′ mod n

accept the signature if and only if 𝑣𝑣 = 𝑢𝑢

end.

5. Implementation and Results

To implement the group signature framework developed in this paper, we analyze the group signature model

because the model differs from conventional digital signature models including ECDSA, ElGammel, RSA

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

91

signature models. This difference is due to the number of parties participating in the protocol. Unlike the

schemes stated above, group signature involves more members (group manager, group members and verifiers).

Each member of a group can sign on behalf of a group with its identity unknown by any verifier. This requires

each member in the group to have a different private key but use same public key. Hence there are three distinct

processes in the scheme i.e. signing, group management, and signature verification. The group management

function is comprised of key generation, revocation and open. So in this paper, each of the functionalities is

handled by a specialized java class as shown in Table 2. Even though key generation and issuance, revocation,

and opening are carried out by one entity in protocol run, we treat these operations as being as being the

responsibility of three different servers. We implemented the group scheme in this paper using Java as a

programming language and Eclipse as IDE and JUnit (a unit testing framework for the Java programming

language) for testing. The tools used for the development of this project are shown in table 1:

Table 1: Tools used for implementation

Tool Version

Eclipse Neon 2

Java JDK 8

JUnit 4

Table 2: Java classes for the implementation

Package Classes in Package
groupsignature.client User.java
 Verifier.java

groupsignature.interface CommentsGUI.java
 Main.java

groupsignature.elliptic ECParameters.java
 ECPoint.java
 EllipticCurve.java
 InsecureCurveException.java
 NoCommonMotherException.java
 NotOnMotherException.java
 secp112r1.java
 secp160r1.java
 secp256r1.java

groupsignature.signature RevocationCertificate.java
 Signature.java

groupsignature.server IssuingManager.java
 OpeningManager.java
 RevocationManager.java

The hardware platform for testing is made up of the following configuration: a laptop with Pentium(R) Dual

Core CPU T4400 @ 2.20Ghz, 6GB RAM, L2 cache size 4MB with 64 bits Windows 8 operating system.

6. Group Signature Performance

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

92

6.1. Implementation Results

Figure 1: output screen

The main interface is shown in figure 2.

An examination of the results as can be found in the output of figure 1 showed that the different algorithms

execution took variable amount of time. The following table shows the execution time (in milliseconds) of each

operation.

---------------Setup RevocationManager--------------

Execution time was 3091 ms.

Rpk:

l =
28618984277415087468980381405350706365958128198147092158118150
19244530402203781226293766248974310733684031895750692223036133

4033308707382577701707952454397

b =
12227076820256716824691020899120038331567748269840674114754788
36513068097262465506602567415456141084176618347539709774315873

6244359880196917284449891444979

w =
20826599520353555649086734352900689240712891095424288921491498
11900389342829453633077325147829117229512499797664836129604730

1570129845964959094164537617617

Rsk:

l1 =
15499934204221743462095252366317735609953889970968242946930054

4365506450140243

l2 =
18463939201509698027060399519481826085154263554782853458660874

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

93

Figure 2: main interface

Table 3: Operations and their execution times

Operation Execution

Time

Key generation and issuance 329 ms

Opening a signature to determine its

signer

172 ms

Revocation 3091 ms

Join (1st User)

 (10th User)

1735 ms

283 ms

Signing message to be sent 1609 ms

verification 1515 ms

It was however observed that in the signing phase, the execution times remained almost constant with negligible

variability. The same observations were made concerning verifications of the signatures. The size of messages

had no effect on the signing and verification times. As can be noticed from table 3, the running time of the Join

algorithm seems to go downward as more members join the group. This is depicted in the graph in figure 3.

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

94

Figure 3: Join interval plot against join algorithm execution time.

6.2. Group Signature vs ECDSA

We compared group signature with ECDSA signature scheme in general using the desirable security

requirements of a digital signature scheme as discussed in section 1.1. This is shown in Table 4.

Table 4: Group signature vs ECDSA

Property GS ECDSA

Unforgeability yes yes

Anonymity yes no

Untraceability yes no

Traceability yes yes

Unlinkability yes no

Coalition-resistance yes yes

Exculpability yes yes

Immediate-

revocation

yes -

Correctness yes yes

Revocation yes -

7. Security Proof

Suppose we have an arbitrary group signature scheme GS = (GKg; GSig; GVf; Open) with number of signers

only two, i.e. {user0, user1}, we describe a public encryption scheme where the public key for verification is

gpk and the secret keys for signing by user0 and user1 are gsk[0] and gsk[1] respectively. These keys are related

to the group manager secret key, gmsk used for revocation and opening, and the group manager public key

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

95

gmpk. The group signature, 𝜎𝜎 is the encryption of message thus:

M = b0b1 … bn with bi ϵ {0, 1} (9)

which is done bitwise. To decrypt the encryption, 𝜎𝜎 of the bit stream b, we simply verify that 𝜎𝜎 is a valid group

signature, and if so use the group manager's secret key to recover the identity of the signer. This also applies to

arbitrary length messages. We proof the security of group signature as implying the security of public key

cryptography.

Let B be an attacker seeking to break the indistinguishability under chosen plaintext attack (IND-CPA) security

of the encryption scheme A ℰ[𝐺𝐺𝐺𝐺] used for encryption which results in 𝜎𝜎. We construct an adversary A against

the group signature scheme GS such that

𝐀𝐀𝐀𝐀𝐀𝐀𝑨𝑨𝑨𝑨;𝑨𝑨
𝐢𝐢𝐢𝐢𝐀𝐀−𝐜𝐜𝐜𝐜𝐜𝐜(𝒌𝒌) ≤ 𝒑𝒑A(𝒌𝒌).𝐀𝐀𝐀𝐀𝐀𝐀𝐆𝐆𝐆𝐆;𝑩𝑩

𝐜𝐜𝐢𝐢𝐚𝐚𝐢𝐢(𝒌𝒌,𝟐𝟐) (10)

where pA (k) means that adversary A runs in polynomial time bound. A ℰ is an IND-CPA secure encryption

scheme assuming GS is fully-anonymous, the function on the right-hand side of the inequality is negligible. A

runs the guess stage of algorithm B for encryption scheme A ℰ and obtains two messages m0 and m1. These

messages, together with the state information output by B is forwarded to the choose stage of A. In this stage, A

selects at random a position j on which m0 and m1 are different, and creates a challenge ciphertext for B. The

challenge ciphertext is an encryption (gpk; gsk) of a word which on its first (j – 1) positions coincides with m1

and on its last n - j positions coincides with m0, where n = |m0| = |m1|. The bit b on position j in the plaintext

encrypted by the challenge ciphertext is precisely the identity of the player that generated the challenge

signature 𝜎𝜎 which A received from its environment.

Given messages m0 and m1 and s0, …, sp denotes a sequence of p = |diff(m0,m1)| words such that s0 = m0, sp =

m1, and any two consecutive words si -1 and si differ exactly in one bit position. More precisely, let j be the

element of rank i in diff(m0,m1). We can construct word si from word si-1 by flipping the j-th bit of si-1, for i = 1,

…, p. Now, let i be the rank of the value j selected by A during the choose stage of A. Therefore, adversary B

receives as challenge either the encryption of si-1 or the encryption of si, depending on the key used to create

challenge signature 𝜎𝜎 . With this in mind, notice that in the experiment 𝐄𝐄𝐄𝐄𝐜𝐜𝐆𝐆𝐆𝐆;𝑨𝑨
𝐜𝐜𝐢𝐢𝐚𝐚𝐢𝐢−𝟐𝟐(𝒌𝒌,𝟐𝟐) (for b ϵ {0, 1}),

adversary A successfully guesses the bit b whenever adversary B correctly identifies if the challenge ciphertext

is the encryption of si-1 or that of si. To simplify notation, we will write B (Enc(pk, si)) for B (guess, St,

Enc((gpk, gsk), si)). It follows from the above discussion that

Pr[Exp𝐺𝐺𝐺𝐺;𝐴𝐴
ianon−0(𝑘𝑘, 2) = 1] =

1
|diff(𝑚𝑚0,𝑚𝑚1)|

� Pr�𝐵𝐵�Enc(pk, 𝑢𝑢𝑖𝑖−1)� = 1�
|diff(𝑚𝑚0,𝑚𝑚1)|

𝒊𝒊=𝟏𝟏

and

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

96

Pr[Exp𝐺𝐺𝐺𝐺;𝐴𝐴
ianon−1(𝑘𝑘, 2) = 1] =

1
|diff(𝑚𝑚0,𝑚𝑚1)|

� Pr�𝐵𝐵�Enc(pk, 𝑢𝑢𝑖𝑖)� = 1�
|diff(𝑚𝑚0,𝑚𝑚1)|

𝒊𝒊=𝟏𝟏

where the first factor represents the probability that the value j selected by A has rank i. Let p = |diff(m0,m1)|.

We can now bind the advantage of A by:

𝐀𝐀𝐀𝐀𝐀𝐀𝑨𝑨𝑨𝑨;𝑨𝑨
𝐢𝐢𝐢𝐢𝐀𝐀−𝐜𝐜𝐜𝐜𝐜𝐜(𝒌𝒌,𝟐𝟐) = Pr[Exp𝐺𝐺𝐺𝐺;𝐴𝐴

ianon−1(𝑘𝑘, 2) = 1] − Pr [Exp𝐺𝐺𝐺𝐺;𝐴𝐴
ianon−0(𝑘𝑘, 2) = 1]

=
1
p

.�Pr�𝐵𝐵�Enc(pk, 𝑢𝑢𝑖𝑖)� = 1�
p

i=1

−
1
p

.�Pr�𝐵𝐵�Enc(pk, 𝑢𝑢𝑖𝑖−1)� = 1�
p

i=1

=
1
p

.�(Pr�𝐵𝐵�Enc(pk, 𝑢𝑢𝑖𝑖)� = 1�
p

i=1

− Pr�𝐵𝐵�Enc(pk, 𝑢𝑢𝑖𝑖−1)� = 1�)

=
1
p

. (Pr �𝐵𝐵 �Enc�pk, 𝑢𝑢𝑝𝑝�� = 1� − Pr�𝐵𝐵�Enc(pk, 𝑢𝑢0)� = 1�)

=
1
p

. (Pr�𝐵𝐵�Enc(pk,𝑚𝑚1)� = 1� − Pr�𝐵𝐵�Enc(pk,𝑚𝑚0)� = 1�)

=
1
p

. Adv𝐴𝐴ℇ,𝐵𝐵
ind−cpa(𝒌𝒌)

=
1

|𝑚𝑚0|
. Adv𝐴𝐴ℇ,𝐵𝐵

ind−cpa(𝒌𝒌)

We can also bind the length of 𝑚𝑚0 by the total running of algorithm A, which is some polynomial 𝑔𝑔A(.) in the

security parameter. As a result,

AdvGS,𝐵𝐵
anon(𝑘𝑘, 2) ≥

1
𝑔𝑔A(𝑘𝑘) . Adv𝐴𝐴ℇ,𝐵𝐵

ind−cpa(𝑘𝑘)

This gives the result claimed in Equation 10 by rearranging the terms.

8. Recommendation

It is a matter of utmost importance that in designing a security protocol suitable for deployment in an unsecure

environment such as the wireless networks, attention must be given to determining the exact conditions that

must be met for a secure protocol design. Hence there should be a remarkable distinction between what is

known to be sufficient to construct secure and efficient group signatures (considering device limitations) and

what is known to be necessary. This can be achieved by closing the gab existing between which primitive is

sufficient and what is necessary to build a given cryptographic function such as encryption or group signatures.

In this scheme, it is additionally recommended that γ should be erased from group master’s storage after the key

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

97

generation process and can be stored somewhere outside the group master H. This is possibly due to the fact that

the private key is rarely used except in the case of a legal warrant for purposes of privacy revocation.

9. Conclusion

Group signature has been shown to be a secure primitive existentially providing anonymity, addressing

traceability and unlinkability. Other properties of group signature found desirable in this paper include

nonrepudiation, unforgeability, and exculpability. The main advantage of proving that the existence of secure

group signature schemes implies public-key encryption schemes is that one can apply several of the results that

are known for public-key encryption to the case of group signatures. However, group signature schemes have

some limitation which is transferred to schemes using group signatures. In the event of exposure of a member’s

signing key probably due to a compromise of the underlying storage system or human errors, this danger may

escalate as the group size increases.

References

[1] Chaum, D. and van Heyst, E. Group signatures. In D. W. Davies, editor, Advances in Cryptology,

EUROCRYPT 1991 (Lecture Notes in Computer Science 547), pages 257–265. Springer-Verlag, April

1991. Brighton, U.K.

[2] Khalique, A. Singh, K. Sood, S. ”Implementation of Elliptic Curve Digital Signature Algorithm”, May

2010.Web.http://www.ijcaonline.org/volume2/number2/pxc387876.pdf.

[3] Blumenthal, Matt. ”Encryption: Strengths and Weaknesses of Public key Cryptography”, Web.

http://www.csc.villanova.edu/_tway/courses/csc3990/f2007/csrs2007/01-pp1-7-MattBlumenthal.pdf.

[4] Abdalla M., Warinschi B. (2004) On the Minimal Assumptions of Group Signature Schemes. In: Lopez

J., Qing S., Okamoto E. (eds) Information and Communications Security. ICICS 2004. Lecture Notes

in Computer Science, vol 3269. Springer, Berlin, Heidelberg

[5] Ateniese, G. Camenisch, J. Joye, M. and Tsudik, G. A practical and provably secure coalition-resistant

group signature scheme. In M. Bellare, editor, Advances in Cryptology - CRYPTO 2000, volume 1880

of Lecture Notes in Computer Science, pages 255-270, Santa Barbara, CA, USA, Aug. 20-24, 2000.

Springer-Verlag,Berlin, Germany.

[6] Chen, L. and Pedersen, T. P. New group signature schemes. In A. D. Santis, editor, Advances in

Cryptology, EUROCRYPT'94, volume 950 of Lecture Notes in Computer Science, pages 171-181,

Perugia, Italy, May 9-12, 1994. Springer-Verlag, Berlin, Germany.

[7] Camenisch, J. Efficient and generalized group signatures. In W. Fumy, editor, Advances in Cryptology

EUROCRYPT'97, volume 1233 of Lecture Notes in Computer Science, pages 465{479, Konstanz,

Germany, May 11{15, 1997. Springer-Verlag, Berlin, Germany.

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 82-98

98

[8] Bellare, M. Micciancio, D. and Warinschi, B. Foundations of group signatures: Formal definitions,

simplified requirements, and a construction based on general assumptions. In E. Biham, editor,

Advances in Cryptology { EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,

pages 614{629, Warsaw, Poland, May 4{8, 2003. Springer-Verlag, Berlin, Germany.

[9] Kiayias, A. and Yung, M. Group signatures: Provable security, efficient constructions and anonymity

from trapdoor-holders. Cryptology ePrint Archive, Report 2004/076, 2004. http://eprint.iacr.org/.

[10] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic groups.

Cryptology ePrint Archive, Report 2004/077, 2004. http://eprint.iacr.org/.

[12] IEEE P1556 Working Group, VSC Project. Dedicated short range communications (DSRC), 2003

[13] E. Brickell, J. Camenisch, and L. Chen. Direct Anonymous Attestation, Oct. 2004.

[14] A. Lysyanskaya and Z. Ramzan. “Group blind digital signatures: A scalable solution to electronic

cash”. In Proc. Financial Cryptography, 1998.

[15] J. Camenisch. “Efficient anonymous fingerprinting with group signatures”. In ASIACRYPT 2000, vol.

1976 of LNCS, pp. 415{428. Springer Verlag, 2000.

