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Abstract 

A Group signature protocol is a cryptographic scheme that decouples a user identity and location from 

verification procedure during authentication. In a group signature scheme, a user is allowed to generate 

signatures on behalf of other group members but identity and location information of the signer is not known by 

a verifier. This ensures privacy, authentication and unlinkability of users. Although group signature is expensive 

to implement, its existential anonymity, non-repudiation and untraceablility properties make it attractive 

especially for resources-constrained devices in wireless network. A general group signature scheme usually 

contains six basic phases: setup (or key generation), join, message signing (or signature generation), signature 

verification, open and user revocation. In this paper, an evaluation of the performance of group signature based 

on three of the phases mentioned above is considered and its security in wireless networks examined. The key 

generation, signing and verification algorithms are implemented in Java 8. A proof of security of group signature 

by implication is also presented. 

 Keywords: Wireless network; authentication; security; anonymity; untraceability; group signature. 

1. Introduction 

A Group Signature (GS) scheme is a method for allowing a member of a group to anonymously sign a message 

on behalf of the group. The concept was first introduced by David Chaum and Eugene van Heyst [1] in 1991.  

----------------------------------------------------------------------- 

* Corresponding author.  
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Group signatures can be used in many privacy-preserving services and authentication schemes. Group 

signatures can be understood as a subset of attribute authentication systems which contain only one attribute 

representing a membership in a group. A user who is a member of a group can sign a message on behalf of the 

group and send the message anonymously to a verifier. According to [1], a secure group signature scheme 

should satisfy two basic requirements, anonymity and traceability. Anonymity stipulates that the identity of the 

signer should remain unknown to anyone verifying the signature including other group elements. On the other 

hand, traceability requires that there should be an entity, called the group manager, capable of revoking the 

anonymity of signer whenever necessary. Elliptic Curve Digital Signature Algorithm (ECDSA) is a variant of 

Digital Signature Algorithm (DSA) used extensively in a vast area of applications and across many different 

fields to verify the authenticity of messages and confirm that they have not been altered in transmission. 

ECDSA is a version of DSA using elliptic curves. ECDSA has been proven to be more effective than using 

DSA as it provides the same security with a smaller key size [2].  The two schemes (GS and ECDSA) are public 

key algorithms. Public key cryptography provides two keys for authentication. These keys are public key and 

private key. In terms of digital signatures (including ECDSA), the private key is used for creating signatures and 

the public key is copied and handed out to validate signatures. For GS, the group members each have 

differentiated private keys used for signing and a common group public key for verifying the signatures made 

available to all verifiers. Applications that benefit from group signatures are: vehicle safety communications 

(VSC) [12] system to preserve the privacy of its users, anonymous attestation (e.g. DAA-Direct Anonymous 

Attestation [13]), bidding [6], electronic cash [14], anonymous fingerprinting [15] etc. 

1.1. Properties of a Group Signature Scheme 

Group signature schemes usually provide the following properties: 

• Unforgeability - only an unrevoked group member can create a valid signature on behalf of the group. 

• Anonymity - a verifier is not able to determine the identity of a signer. 

• Complete anonymity - if an attacker obtains a valid signature and knows gpk and all keys of group 

members’ gsk[i], he is not able to determine the identity of a signer. 

• Traceability - all members can be tracked by the group manager or the revocation manager by 

member’s signed message. 

• Untraceability - any member cannot be tracked by a verifier and/or other group members by his/her 

signed messages. 

• Unlinkability - a verifier and other members are not able to link two signatures which have been signed 

by one member of the group. 

• Coalition-resistance - it is impossible to create a valid signature by a subgroup of users. 

• Exculpability - even group manager is not able to create the valid signature of a group member. 

• Correctness - every correct signature of a group member has to be always accepted during verification. 

• Revocation - a revoked member is not able to create valid signatures on behalf of the group. 

• Differentiation of group members - all members of a group must have a different gsk[i]. 

• Immediate-revocation - if a group member is revoked, his capability of creating the group signatures is 
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immediately disabled. 

1.2. Security Assumptions of Group Signature    

One of the most critical requirements in cryptographic research is identifying (strongest and/or weakest) 

assumptions required for the construction of secure primitives. This helps to close the gap between which 

primitive is sufficient and what is necessary to build a given cryptographic function such as a group signature to 

determine the exact conditions that must be met for them to exist. 

Several implications and separations are known in literature for primitives such as standard signatures (DSA, 

ECDSA, RSA, etc.) and public-key encryption, very little is known for group signatures despite the intuition 

that the latter appears to be a stronger primitive than standard signatures [4]. 

Apart from the original work of [1], many other schemes have been proposed in the literature (e.g., [5, 6, 7]). 

Each of these has its own set of security properties and requirements. Recently, a formal model of security for 

group signatures was put forward [8], which integrated the many sets of security requirements into two basic 

categories, called full-anonymity and full-traceability. 

These two basic properties were shown to imply in the case of static groups all of the existing security properties 

of previous scheme. Formal definitions for dynamic groups were also provided in subsequent works [9, 10]. The 

significance of such formal definitions includes concrete and simpler proofs of security (only two properties 

need be satisfied) and better understanding a group signature scheme being secure with its implications. Another 

benefit is that precise relations between group signatures and other cryptographic primitives can be drawn. The 

implications proven in [4] are only possible in the presence of such formal models of security. In this paper, we 

show that the group signature cryptographic primitive is secure by implied security of the constituent primitives 

used to build the group signature scheme. 

2. Protocol Specification 

The group manager computes initialization parameters. The parameters include 

(i) H selects a random number γ ∈ ℤ and computes a group manager private  key (gmpk) computed as: 

gmsk = γ          (1) 

(ii) The group manager public key (gmpk) is given as,  

gmpk = (g1, g2, h1, h2, … hT, w)         (2) 

where given Fq a finite field with an elliptic curve E, G1 a multiplicative cyclic group of prime order p and G2 a 

multiplicative group of exponent p, with some power of p as its order, g1 is a generator of G1 and g2  is an 

order-p element of G2.  The elements g1 and g2 will be selected at random as part of system setup. h1, h2, … hT 
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represent randomly selected  hj ∈ G for each interval j and w is given as w = g2γ.  

(iii) H uses the above computed parameters to generate a vector of N user’s secret keys usk and a vector of N x 

T revocation tokens (urt) for each registered user with current time intervals to ensure unlinkability as follows: 

usk = (usk[1], usk[2], …, usk[N])        (3) 

urt  = (urt[1][1],…, urt[1][T],…, urt[N][T])       (4) 

(iv)  The user secret key for N users is given as:  

usk[i]  = (𝐴𝐴𝑖𝑖, 𝑥𝑥𝑖𝑖)           (5) 

Where Ai = 𝑔𝑔11/(𝛾𝛾+𝑥𝑥𝑖𝑖) for all i  ∈ [1,𝑁𝑁] and 𝑥𝑥𝑖𝑖  ∈ ℤ is selected randomly.  

(v) Next, randomly selected ℎ𝑗𝑗 ∈ [1,𝑇𝑇] is used to compute the revocation token at time interval j of 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖  with 

secret key (𝐴𝐴𝑖𝑖, 𝑥𝑥𝑖𝑖) as: 

Bij = hj
xi     for all i  ∈ [1, N] and j ∈ ℕ       (6) 

(vi) H computes an alias for each registered user intending to roam using secret splitting mechanism from: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑈𝑈 = (𝑤𝑤||𝐼𝐼𝐼𝐼𝐻𝐻) ⊕ 𝐼𝐼𝐼𝐼𝑈𝑈  ⊕ 𝐼𝐼𝐼𝐼𝐻𝐻         (7) 

Where IDH is the group manager identity,  IDU  is the identity of the user, U and ⊕ is an Exclusive-Or operator. 

In the authentication phase a group signature with revocation support is illustrated as follows: 

(i) User selects a random number, 𝑁𝑁𝑈𝑈 and computes 𝑁𝑁𝑈𝑈𝐺𝐺 (we assume 𝐺𝐺1 = 𝐺𝐺2 = 𝐺𝐺, from bilinear map) and 

sends (𝐼𝐼𝐼𝐼𝐻𝐻 , 𝑁𝑁𝑈𝑈𝐺𝐺) to 𝑉𝑉. 

(ii) Verifier, 𝑉𝑉 selects a random number NV,   computes a session key used between 𝑉𝑉  and U as follows 

k𝑉𝑉U  = NV(𝑁𝑁𝑈𝑈𝐺𝐺)                            (8) 

and sends NV to U. 

(iii) U computes a group signature pkV1  by running group signature 𝜎𝜎  by executing the signing algorithm, 

G.Sig(gmpk, gsk[i], j, alias, NV1G) and use it to sign a message sent to V. 

It then computes a temporary alias by encrypting  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑈𝑈  given to it by group manager using its session key 

𝑘𝑘𝑈𝑈𝑉𝑉. Then it sends (alias, σu) to 𝑉𝑉. Otherwise, if the signature σV1  = 0, connection rejected. 

(iv)  𝑉𝑉 verifies the signature from U with the group manager public key, gmpk by running the verification 

algorithm, G.Ver(gmpk, usk[i], j, alias, 𝑁𝑁𝑉𝑉G, 𝜎𝜎𝑢𝑢).   
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𝜎𝜎U = �
1, 𝜎𝜎 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣, allow 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐 

0, 𝑐𝑐𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑤𝑤𝑎𝑎𝑢𝑢𝑢𝑢 disallow 
  𝑉𝑉 allows connection if 𝜎𝜎U =1 and disallow otherwise. 

3. Group Signature Algorithms 

3.1. Key Generation Algorithm 

This algorithm takes as input integers 𝑁𝑁,𝑇𝑇 ∈  ℕ indicating the number of subscribers (users) and the number of 

time intervals, respectively.  

VLR-GS.KenGen (N, T) 

select randomly a generator 𝑔𝑔2 ∈ G2  

set 𝑔𝑔1 = 𝜓𝜓(𝑔𝑔2)  

select randomly γ ∈ ℤ𝑝𝑝  

set w = 𝑔𝑔2𝛾𝛾  

set hsk = 𝛾𝛾 

for i = 0 to N – 1 // generate  an SDH tuple (𝐴𝐴𝑖𝑖 , 𝑥𝑥𝑖𝑖 )  

select randomly 𝑥𝑥𝑖𝑖 ∈ ℤ // 𝑥𝑥𝑖𝑖 + γ must be nonzero 

set 𝐴𝐴𝑖𝑖 = 𝑔𝑔11/(𝛾𝛾+𝑥𝑥𝑖𝑖)  

set 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑖𝑖 = (𝑤𝑤||IDH) ⊕ ID𝑖𝑖  ⊕ IDH) 

for j = 0 to T – 1 // generate  time intervals for useri  

select ℎ𝑗𝑗 ∈ G // to ensure backward unlinkability  

set 𝐵𝐵𝑖𝑖𝑗𝑗 =  ℎ𝑗𝑗
𝑥𝑥𝑖𝑖  

set musk[i] = (𝐴𝐴𝑖𝑖, 𝑥𝑥𝑖𝑖) 

set murt[i][j] = 𝐵𝐵𝑖𝑖𝑗𝑗   

end for 

end for 
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set hspk = (𝑔𝑔1, 𝑔𝑔2, ℎ1, …, ℎ𝑇𝑇, w) 

end 

3.2. Signing Algorithm 

The inputs to this signing algorithm are a home server public key, hspk = (𝑔𝑔1, 𝑔𝑔2, ℎ1, …, ℎ𝑇𝑇, w), the current 

time interval j, the mobile user secret key, musk[i] = (𝐴𝐴𝑖𝑖, 𝑥𝑥𝑖𝑖) and a signed message    M ∈ {0, 1}* assumed to 

include all time intervals j in order to bind the signature to the interval. 

VLR-GS.Sig (hspk, j, usk[i], M) 

select randomly a generator 𝑔𝑔2 ∈ G2  

set 𝑔𝑔1 = 𝜓𝜓(𝑔𝑔2)  

compute SPK 𝑉𝑉 

select random number 𝛼𝛼,𝛽𝛽, 𝛿𝛿 ∈ ℤ𝑝𝑝 

set 𝜀𝜀 = 𝑥𝑥𝑖𝑖𝛼𝛼, 𝜁𝜁 = 𝑥𝑥𝑖𝑖𝛽𝛽, 𝜂𝜂 =  𝑥𝑥𝑖𝑖𝛿𝛿 

compute T1 = 𝐴𝐴𝑖𝑖𝑔𝑔2𝛼𝛼 and T2 = 𝑔𝑔1𝛼𝛼𝑔𝑔2
𝛽𝛽,  𝑇𝑇3 =  𝑢𝑢(𝑔𝑔1

𝑥𝑥𝑖𝑖 , ℎ𝑗𝑗)𝛿𝛿 and T4 = 𝑔𝑔1𝛿𝛿  

select 𝑢𝑢𝛼𝛼 , 𝑢𝑢𝛽𝛽 , 𝑢𝑢𝛿𝛿 , 𝑢𝑢𝑥𝑥𝑖𝑖 , 𝑢𝑢𝜀𝜀 , 𝑢𝑢𝜁𝜁 , 𝑢𝑢𝜂𝜂 ∈ ℤ𝑝𝑝 //blinding factors to compute  SPK 

compute  𝑅𝑅1 =  𝑔𝑔1
𝑟𝑟𝛼𝛼  𝑔𝑔2

𝑟𝑟𝛽𝛽,  𝑅𝑅2 =  𝑇𝑇2
𝑟𝑟𝑥𝑥𝑖𝑖  ( 1

𝑔𝑔1
)𝑟𝑟𝜀𝜀( 1

𝑔𝑔2
)𝑟𝑟𝜁𝜁, 

compute  𝑅𝑅3 = � 1
𝑒𝑒(𝑇𝑇1,𝑔𝑔1)

�
𝑟𝑟𝑥𝑥𝑖𝑖 𝑢𝑢(𝑔𝑔2,𝑤𝑤)𝑟𝑟𝛼𝛼𝑢𝑢(𝑔𝑔1,𝑔𝑔2)𝑟𝑟𝜀𝜀  

compute  𝑅𝑅4 = 𝑢𝑢(𝑔𝑔1, ℎ𝑗𝑗)𝑟𝑟𝜂𝜂 ,  𝑅𝑅5 =  𝑔𝑔1
𝑟𝑟𝛿𝛿 

compute  𝑅𝑅6 =  𝑇𝑇4
𝑟𝑟𝑥𝑥𝑖𝑖  ( 1

𝑔𝑔1
)𝑟𝑟𝜂𝜂  

compute  c = 𝐻𝐻(𝑔𝑔𝑔𝑔𝑘𝑘, 𝑗𝑗,𝑀𝑀,  𝑇𝑇1,  𝑇𝑇2,  𝑇𝑇3,  𝑇𝑇4, 𝑅𝑅1,  𝑅𝑅2,  𝑅𝑅3,  𝑅𝑅4, 𝑅𝑅5,  𝑅𝑅6 ) 

compute 𝑢𝑢𝛼𝛼 =  𝑢𝑢𝛼𝛼 + 𝑐𝑐𝛼𝛼,  𝑢𝑢𝛽𝛽 =  𝑢𝑢𝛽𝛽 + 𝑐𝑐𝛽𝛽,  𝑢𝑢𝛿𝛿 =  𝑢𝑢𝛿𝛿+ c𝛿𝛿 , 𝑢𝑢𝑥𝑥𝑖𝑖 =  𝑢𝑢𝑥𝑥𝑖𝑖 + 𝑐𝑐𝑥𝑥𝑖𝑖 

compute  𝑢𝑢𝜀𝜀 =  𝑢𝑢𝜀𝜀 + 𝑐𝑐𝜀𝜀,  𝑢𝑢𝜁𝜁 =  𝑢𝑢𝜁𝜁 + 𝑐𝑐𝜁𝜁,  𝑢𝑢𝜂𝜂 =  𝑢𝑢𝜂𝜂+ c𝜂𝜂 

compute 𝜎𝜎 = ( 𝑇𝑇1,  𝑇𝑇2,  𝑇𝑇3,  𝑇𝑇4, c, 𝑢𝑢𝛼𝛼 ,  𝑢𝑢𝛽𝛽, 𝑢𝑢𝛿𝛿  𝑢𝑢𝑥𝑥𝑖𝑖 , 𝑢𝑢𝜀𝜀 , 𝑢𝑢𝜁𝜁, 𝑢𝑢𝜂𝜂)  
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output 𝜎𝜎 // as the signature 

end 

3.3. Verification Algorithm 

The input to this verification algorithm include a home server public key gpk = (𝒈𝒈𝟏𝟏, 𝒈𝒈𝟐𝟐, 𝒉𝒉𝟏𝟏, …, 𝒉𝒉𝑻𝑻, w), the  

current time interval j, a revocation list 𝑹𝑹𝑹𝑹𝒋𝒋 that consists of murt[i][j] for all revoked i at the time interval j and a 

signature 𝝈𝝈 = ( 𝑻𝑻𝟏𝟏,  𝑻𝑻𝟐𝟐,  𝑻𝑻𝟑𝟑,  𝑻𝑻𝟒𝟒, c, 𝒔𝒔𝜶𝜶 ,  𝒔𝒔𝜷𝜷, 𝒔𝒔𝜹𝜹 𝒔𝒔𝒙𝒙𝒊𝒊 , 𝒔𝒔𝜺𝜺 , 𝒔𝒔𝜻𝜻, 𝒔𝒔𝜼𝜼). 

VLR-GS.Ver(gpk, RLj , 𝜎𝜎 , M).  

select randomly a generator 𝑔𝑔2 ∈ G2  

set 𝑔𝑔1 = 𝜓𝜓(𝑔𝑔2)  

check SPK 𝑉𝑉 

set 𝑅𝑅1′ =  𝑔𝑔1
𝑠𝑠𝛼𝛼 𝑔𝑔2

𝑠𝑠𝛽𝛽 (1/ T2)𝑐𝑐    // Recomputed 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3 

set 𝑅𝑅2′ =  𝑇𝑇2
𝑠𝑠𝑥𝑥𝑖𝑖 (1/g1)𝑠𝑠𝜀𝜀 (1/g2)𝑠𝑠𝜁𝜁  

set 𝑅𝑅3′ =  � 1
𝑒𝑒(𝑇𝑇1,𝑔𝑔1)

�
𝑠𝑠𝑥𝑥𝑖𝑖 𝑢𝑢(𝑔𝑔2,𝑤𝑤)𝑠𝑠𝛼𝛼𝑢𝑢(𝑔𝑔1,𝑔𝑔2)𝑠𝑠𝜀𝜀  (� 1

𝑒𝑒(𝑇𝑇1,𝑔𝑔1)
� 𝑢𝑢(𝑔𝑔1,𝑔𝑔1))𝑐𝑐    

set 𝑅𝑅4′ =  𝑢𝑢(𝑔𝑔1, ℎ𝑗𝑗)𝑠𝑠𝜂𝜂(1/ T3)𝑐𝑐   

set 𝑅𝑅5′ =  𝑔𝑔1
𝑠𝑠𝛿𝛿(1/ T4)𝑐𝑐 

set 𝑅𝑅6′ =  𝑇𝑇4
𝑠𝑠𝑥𝑥𝑖𝑖 (1/g1)𝑠𝑠𝜂𝜂  

if c = 𝐻𝐻(𝑔𝑔𝑔𝑔𝑘𝑘, 𝑗𝑗,𝑀𝑀,  𝑇𝑇1,  𝑇𝑇2,  𝑇𝑇3,  𝑇𝑇4,𝑅𝑅1′ ,𝑅𝑅2′ ,𝑅𝑅3′ ,𝑅𝑅4′ ,𝑅𝑅5′ ,𝑅𝑅6′ )// compare with c in 𝜎𝜎 

Output “signature valid” else “signature invalid” 

for j = 1 to T //revocation check in RLj 

if  𝑇𝑇3 ≠  𝑢𝑢(𝑇𝑇4,𝐵𝐵𝑖𝑖𝑗𝑗)  

output “user not revoked” 

allow access 
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else  

output “user revoked” 

deny access 

endif 

end for 

end 

4. ECDSA Scheme Algorithms 

4.1. ECDSA Key Pair Generation Algorithm 

ECDSA.KeyGen 

Input G, n // base point on E\𝔽𝔽q, n is order of G 

Randomly select d ∈ ℤ𝑝𝑝 in the interval [1, n -1] 

compute Q = dG 

set public key =  Q  

set private key = d 

output public key, private key 

end 

4.2. ECDSA Signature Generation Algorithm 

ECDSA.SignGen 

Input: d, G, n, hash function H, and message m 

Output: Signature (r; s) 

compute random integer k, within 1 ≤ 𝑘𝑘 ≤ 𝑐𝑐 − 1 

compute 𝑘𝑘𝐺𝐺 = (𝑥𝑥1,𝑦𝑦1)  

convert 𝑥𝑥1 to an integer 𝑥𝑥1′  
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compute r = 𝑥𝑥1′  mod n  

If r = 0 then go to step 1 

compute H(m) and convert this bit string to an integer e 

compute s = 𝑘𝑘−1(e + dr) mod n.  

If s = 0 go to step 1 

output signature = (r, s) end 

4.3. ECDSA Signature Verification Algorithm 

ECDSA.Verify 

Input: (r; s), m, n, e, G, Q, and hash function H 

Output: Accept or reject signature (r; s) 

verify r and s are integers in the interval [1, n - 1] 

compute H(m) and convert bit string to an integer e 

compute w =  𝑢𝑢−1 mod n 

compute 𝑢𝑢1 = ew mod n and 𝑢𝑢2 = rw mod n 

compute X = 𝑢𝑢1G + 𝑢𝑢2Q 

If X = 𝑂𝑂(the point at infinity), reject the signature. 

Otherwise, convert 𝑥𝑥1of X to an integer 𝑥𝑥1′   

compute 𝑣𝑣 = 𝑥𝑥1′  mod n 

accept the signature if and only if 𝑣𝑣 = 𝑢𝑢 

end. 

5. Implementation and Results 

To implement the group signature framework developed in this paper, we analyze the group signature model 

because the model differs from conventional digital signature models including ECDSA, ElGammel, RSA 
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signature models. This difference is due to the number of parties participating in the protocol. Unlike the 

schemes stated above, group signature involves more members (group manager, group members and verifiers). 

Each member of a group can sign on behalf of a group with its identity unknown by any verifier. This requires 

each member in the group to have a different private key but use same public key. Hence there are three distinct 

processes in the scheme i.e. signing, group management, and signature verification. The group management 

function is comprised of key generation, revocation and open. So in this paper, each of the functionalities is 

handled by a specialized java class as shown in Table 2. Even though key generation and issuance, revocation, 

and opening are carried out by one entity in protocol run, we treat these operations as being as being the 

responsibility of three different servers. We implemented the group scheme in this paper using Java as a 

programming language and Eclipse as IDE and JUnit (a unit testing framework for the Java programming 

language) for testing. The tools used for the development of this project are shown in table 1: 

Table 1: Tools used for implementation 

Tool Version 

Eclipse Neon 2 

Java JDK 8 

JUnit 4 

Table 2: Java classes for the implementation 

Package Classes in Package 
groupsignature.client User.java 
 Verifier.java 
  
groupsignature.interface CommentsGUI.java 
 Main.java 
  
groupsignature.elliptic ECParameters.java 
 ECPoint.java 
 EllipticCurve.java 
 InsecureCurveException.java 
 NoCommonMotherException.java 
 NotOnMotherException.java 
 secp112r1.java 
 secp160r1.java 
 secp256r1.java 
  
groupsignature.signature RevocationCertificate.java 
 Signature.java 
  
groupsignature.server IssuingManager.java 
 OpeningManager.java 
 RevocationManager.java 

The hardware platform for testing is made up of the following configuration: a laptop with Pentium(R) Dual 

Core CPU T4400 @ 2.20Ghz, 6GB RAM, L2 cache size 4MB with 64 bits Windows 8 operating system.  

6. Group Signature Performance  
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6.1. Implementation Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: output screen 

The main interface is shown in figure 2. 

An examination of the results as can be found in the output of figure 1 showed that the different algorithms 

execution took variable amount of time. The following table shows the execution time (in milliseconds) of each 

operation. 

 

---------------Setup RevocationManager-------------- 

Execution time was 3091 ms. 

 

Rpk: 

l = 
28618984277415087468980381405350706365958128198147092158118150
19244530402203781226293766248974310733684031895750692223036133

4033308707382577701707952454397 

b = 
12227076820256716824691020899120038331567748269840674114754788
36513068097262465506602567415456141084176618347539709774315873

6244359880196917284449891444979 

w = 
20826599520353555649086734352900689240712891095424288921491498
11900389342829453633077325147829117229512499797664836129604730

1570129845964959094164537617617 

 

Rsk: 

l1 = 
15499934204221743462095252366317735609953889970968242946930054

4365506450140243 

l2 = 
18463939201509698027060399519481826085154263554782853458660874
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Figure 2: main interface 

Table 3: Operations and their execution times 

Operation Execution 

Time 

Key generation and issuance 329 ms 

Opening a signature to determine its 

signer 

172 ms 

Revocation   3091 ms 

Join (1st User) 

        (10th User) 

1735 ms 

283 ms 

Signing message to be sent 1609 ms 

verification 1515 ms 

 

It was however observed that in the signing phase, the execution times remained almost constant with negligible 

variability. The same observations were made concerning verifications of the signatures. The size of messages 

had no effect on the signing and verification times. As can be noticed from table 3, the running time of the Join 

algorithm seems to go downward as more members join the group. This is depicted in the graph in figure 3. 
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Figure 3:  Join interval plot against join algorithm execution time. 

6.2. Group Signature vs ECDSA 

We compared group signature with ECDSA signature scheme in general using the desirable security 

requirements of a digital signature scheme as discussed in section 1.1. This is shown in Table 4. 

Table 4: Group signature vs ECDSA 

Property GS ECDSA 

Unforgeability yes yes 

Anonymity yes no 

Untraceability yes no 

Traceability yes yes 

Unlinkability yes no 

Coalition-resistance yes yes 

Exculpability yes yes 

Immediate-

revocation 

yes - 

Correctness yes yes 

Revocation yes - 

 

7. Security Proof 

Suppose we have an arbitrary group signature scheme GS = (GKg; GSig; GVf; Open) with number of signers 

only two, i.e. {user0, user1}, we describe a public encryption scheme where the public key for verification is 

gpk and the secret keys for signing by user0 and user1 are gsk[0] and gsk[1] respectively. These keys are related 

to the group manager secret key, gmsk used for revocation and opening, and the group manager public key 
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gmpk. The group signature, 𝜎𝜎 is the encryption of message thus: 

M = b0b1 … bn with bi ϵ {0, 1}        (9) 

which is done bitwise. To decrypt the encryption, 𝜎𝜎 of the bit stream b, we simply verify that 𝜎𝜎 is a valid group 

signature, and if so use the group manager's secret key to recover the identity of the signer. This also applies to 

arbitrary length messages. We proof the security of group signature as implying the security of public key 

cryptography. 

Let B be an attacker seeking to break the indistinguishability under chosen plaintext attack (IND-CPA) security 

of the encryption scheme A ℰ[𝐺𝐺𝐺𝐺] used for encryption which results in 𝜎𝜎. We construct an adversary A against 

the group signature scheme GS such that 

𝐀𝐀𝐀𝐀𝐀𝐀𝑨𝑨𝑨𝑨;𝑨𝑨
𝐢𝐢𝐢𝐢𝐀𝐀−𝐜𝐜𝐜𝐜𝐜𝐜(𝒌𝒌) ≤ 𝒑𝒑A(𝒌𝒌).𝐀𝐀𝐀𝐀𝐀𝐀𝐆𝐆𝐆𝐆;𝑩𝑩

𝐜𝐜𝐢𝐢𝐚𝐚𝐢𝐢(𝒌𝒌,𝟐𝟐)       (10) 

where pA (k) means that adversary A runs in polynomial time bound. A ℰ is an IND-CPA secure encryption 

scheme assuming GS is fully-anonymous, the function on the right-hand side of the inequality is negligible. A 

runs the guess stage of algorithm B for encryption scheme A ℰ and obtains two messages m0 and m1. These 

messages, together with the state information output by B is forwarded to the choose stage of A. In this stage, A 

selects at random a position j on which m0 and m1 are different, and creates a challenge ciphertext for B. The 

challenge ciphertext is an encryption (gpk; gsk) of a word which on its first (j – 1) positions coincides with m1 

and on its last n - j positions coincides with m0, where n = |m0| = |m1|. The bit b on position j in the plaintext 

encrypted by the challenge ciphertext is precisely the identity of the player that generated the challenge 

signature 𝜎𝜎 which A received from its environment. 

Given messages m0 and m1 and  s0, …, sp denotes a sequence of p = |diff(m0,m1)| words such that s0 = m0, sp = 

m1, and any two consecutive words si -1 and si differ exactly in one bit position. More precisely, let j be the 

element of rank i in diff(m0,m1). We can construct word si from word si-1 by flipping the j-th bit of si-1, for i = 1, 

…,  p. Now, let i be the rank of the value j selected by A during the choose stage of A. Therefore, adversary B 

receives as challenge either the encryption of si-1 or the encryption of si, depending on the key used to create 

challenge signature   𝜎𝜎 . With this in mind, notice that in the experiment 𝐄𝐄𝐄𝐄𝐜𝐜𝐆𝐆𝐆𝐆;𝑨𝑨
𝐜𝐜𝐢𝐢𝐚𝐚𝐢𝐢−𝟐𝟐(𝒌𝒌,𝟐𝟐) (for b ϵ {0, 1}), 

adversary A successfully guesses the bit b whenever adversary B correctly identifies if the challenge ciphertext 

is the encryption of si-1 or that of si. To simplify notation, we will write B (Enc(pk, si)) for B (guess, St, 

Enc((gpk, gsk), si)). It follows from the above discussion that  

Pr[Exp𝐺𝐺𝐺𝐺;𝐴𝐴
ianon−0(𝑘𝑘, 2) = 1] =  

1
|diff(𝑚𝑚0,𝑚𝑚1)|

� Pr�𝐵𝐵�Enc(pk, 𝑢𝑢𝑖𝑖−1)� = 1�
|diff(𝑚𝑚0,𝑚𝑚1)|

𝒊𝒊=𝟏𝟏

 

and 
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Pr[Exp𝐺𝐺𝐺𝐺;𝐴𝐴
ianon−1(𝑘𝑘, 2) = 1] =  

1
|diff(𝑚𝑚0,𝑚𝑚1)|

� Pr�𝐵𝐵�Enc(pk, 𝑢𝑢𝑖𝑖)� = 1�
|diff(𝑚𝑚0,𝑚𝑚1)|

𝒊𝒊=𝟏𝟏

 

where the first factor represents the probability that the value j selected by A has rank i. Let p = |diff(m0,m1)|. 

We can now bind the advantage of A by: 

𝐀𝐀𝐀𝐀𝐀𝐀𝑨𝑨𝑨𝑨;𝑨𝑨
𝐢𝐢𝐢𝐢𝐀𝐀−𝐜𝐜𝐜𝐜𝐜𝐜(𝒌𝒌,𝟐𝟐) =  Pr[Exp𝐺𝐺𝐺𝐺;𝐴𝐴

ianon−1(𝑘𝑘, 2) = 1] − Pr [Exp𝐺𝐺𝐺𝐺;𝐴𝐴
ianon−0(𝑘𝑘, 2) = 1] 

=  
1
p

.�Pr�𝐵𝐵�Enc(pk, 𝑢𝑢𝑖𝑖)� = 1�
p

i=1

−  
1
p

.�Pr�𝐵𝐵�Enc(pk, 𝑢𝑢𝑖𝑖−1)� = 1�
p

i=1

 

=  
1
p

.�(Pr�𝐵𝐵�Enc(pk, 𝑢𝑢𝑖𝑖)� = 1�
p

i=1

−  Pr�𝐵𝐵�Enc(pk, 𝑢𝑢𝑖𝑖−1)� = 1�) 

=  
1
p

. (Pr �𝐵𝐵 �Enc�pk, 𝑢𝑢𝑝𝑝�� = 1� −  Pr�𝐵𝐵�Enc(pk, 𝑢𝑢0)� = 1�) 

=  
1
p

. (Pr�𝐵𝐵�Enc(pk,𝑚𝑚1)� = 1� −  Pr�𝐵𝐵�Enc(pk,𝑚𝑚0)� = 1�) 

=  
1
p

. Adv𝐴𝐴ℇ,𝐵𝐵
ind−cpa(𝒌𝒌) 

=  
1

|𝑚𝑚0|
. Adv𝐴𝐴ℇ,𝐵𝐵

ind−cpa(𝒌𝒌) 

We can also bind the length of 𝑚𝑚0 by the total running of algorithm A, which is some polynomial 𝑔𝑔A(. ) in the 

security parameter. As a result,  

AdvGS,𝐵𝐵
anon(𝑘𝑘, 2)  ≥  

1
𝑔𝑔A(𝑘𝑘) . Adv𝐴𝐴ℇ,𝐵𝐵

ind−cpa(𝑘𝑘) 

This gives the result claimed in Equation 10 by rearranging the terms. 

8. Recommendation 

It is a matter of utmost importance that in designing a security protocol suitable for deployment in an unsecure 

environment such as the wireless networks, attention must be given to determining the exact conditions that 

must be met for a secure protocol design. Hence there should be a remarkable distinction between what is 

known to be sufficient to construct secure and efficient group signatures (considering device limitations) and 

what is known to be necessary. This can be achieved by closing the gab existing between which primitive is 

sufficient and what is necessary to build a given cryptographic function such as encryption or group signatures. 

In this scheme, it is additionally recommended that γ should be erased from group master’s storage after the key 
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generation process and can be stored somewhere outside the group master H. This is possibly due to the fact that 

the private key is rarely used except in the case of a legal warrant for purposes of privacy revocation.  

9. Conclusion  

Group signature has been shown to be a secure primitive existentially providing anonymity, addressing 

traceability and unlinkability. Other properties of group signature found desirable in this paper include 

nonrepudiation, unforgeability, and exculpability. The main advantage of proving that the existence of secure 

group signature schemes implies public-key encryption schemes is that one can apply several of the results that 

are known for public-key encryption to the case of group signatures. However, group signature schemes have 

some limitation which is transferred to schemes using group signatures. In the event of exposure of a member’s 

signing key probably due to a compromise of the underlying storage system or human errors, this danger may 

escalate as the group size increases. 
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