

11

International Journal of Computer (IJC)

ISSN 2307-4523 (Print & Online)

https://ijcjournal.org/index.php/InternationalJournalOfComputer/index

Comparative Analysis of Leader Election Algorithms In

Distributed Systems

Yevhen Piotrovskyi
*

Logan Ct, Woodbridge, VA 22193, United States of America

Email: yevhen.piotrovskyi@gmail.com

Abstract

Leader election is a fundamental problem in distributed computing, requiring processes to agree on a single

coordinator to manage critical operations such as mutual exclusion, transaction coordination, and state machine

replication. This paper presents a comprehensive comparative analysis of leader election algorithms across

multiple dimensions: message complexity, time complexity, fault tolerance, and practical applicability. We

examine classical ring-based algorithms (Chang-Roberts, Hirschberg-Sinclair), complete network algorithms

(Bully), and modern consensus-based approaches (Paxos, Raft, ZAB). Through systematic evaluation using both

theoretical analysis and empirical experimental simulation, we identify trade-offs between algorithm simplicity,

efficiency, and robustness. Our results indicate that while ring-based algorithms offer optimal message

complexity of O(N log N), consensus-based algorithms such as Raft provide superior fault tolerance and

practical implementation characteristics for modern distributed systems. We synthesize these findings into a

decision framework for practitioners selecting leader election mechanisms based on system requirements and

operational constraints.

Keywords: Leader election; distributed systems; consensus algorithms; Raft; Paxos; fault tolerance; ring

networks; message complexity.

1. Introduction

Distributed systems inherently lack a centralized point of control, yet many coordination tasks require a

designated process to act as a coordinator or leader.

--

Received: 12/14/2025

Accepted: 1/15/2026

Published: 2/1/2026

--

* Corresponding author.

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

12

Leader election is the process by which multiple distributed processes agree on a single node to assume this

coordinator role [3]. This fundamental primitive underlies numerous distributed computing applications,

including distributed databases, cluster management systems, and replicated state machines.

The leader election problem can be formally stated as follows: given a set of N processes, each with a unique

identifier, design a protocol such that exactly one process eventually identifies itself as the leader, and all other

processes acknowledge this election [1]. The problem requires satisfying three essential properties:

● Safety: All non-faulty processes agree on the same leader, and the elected leader is non-faulty.

● Liveness: Eventually, all non-faulty processes identify a leader.

● Uniqueness: Only one leader exists at any given time.

The theoretical foundations of consensus and leader election were significantly influenced by Fischer, Lynch,

and Paterson’s (1985) impossibility result (FLP), which proved that no deterministic algorithm can guarantee

consensus in an asynchronous system where even one process may fail [4]. This result motivated extensive

research into algorithms that circumvent this impossibility through timing assumptions, randomization, or

failure detectors.

This paper contributes a systematic comparative analysis of leader election algorithms, synthesizing theoretical

complexity results with practical implementation considerations. We organize our analysis around three

algorithm families: classical ring-based algorithms, complete network algorithms, and modern consensus-based

protocols. Our contributions include:

● A unified taxonomy of leader election algorithms based on network topology, failure model, and synchrony

assumptions.

● Comparative evaluation across message complexity, time complexity, and fault tolerance dimensions.

● Systematic experimental analysis demonstrating algorithm behavior under varying network sizes.

● A practitioner-oriented decision framework for algorithm selection.

The remainder of this paper is organized as follows: Section II provides background and reviews related work.

Section III details our methodology. Section IV presents evaluation results. Section V discusses implications

and trade-offs. Section VI addresses threats to validity. Section VII concludes with recommendations for

practitioners.

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

13

2. Background and Related Work

2.1. Theoretical Foundations

The leader election problem was first formally posed for ring networks by Le Lann [13], who provided a

solution with

𝑂(𝑁2)

message complexity. Subsequent research focused on reducing message complexity and extending algorithms to

different network topologies and failure models.

The FLP impossibility theorem [4] established that deterministic consensus—and by extension, leader

election—is impossible in purely asynchronous systems with even one faulty process. This seminal result,

which received the Dijkstra Prize in 2001, motivated research into algorithms that operate under partial

synchrony assumptions or employ failure detectors [10].

2.2. Ring-Based Algorithms

Chang-Roberts Algorithm: Chang and Roberts [1] improved upon Le Lann’s algorithm by introducing

message suppression. In their unidirectional ring algorithm, a process forwards a message only if the received

identifier exceeds its own. This achieves 𝑂(𝑁 𝑙𝑜𝑔 𝑁) average-case message complexity while

maintaining 𝑂(𝑁2) worst-case complexity.

Hirschberg-Sinclair Algorithm: Hirschberg and Sinclair [2] achieved 𝑂(𝑁 𝑙𝑜𝑔 𝑁) worst case

message complexity for bidirectional rings through a phase-based approach. In each phase k,

surviving processes probe nodes up to distance 2ᵏ in both directions, with only local maximum

identifiers advancing to subsequent phases.

Peterson/Dolev-Klawe-Rodeh Algorithm: Peterson [11] and Dolev, Klawe, and Rodeh [12]

independently achieved 𝑂(𝑁 𝑙𝑜𝑔 𝑁) message complexity for unidirectional rings, disproving the

conjecture that 𝑂(𝑁2) was a lower bound for such networks.

2.3. Complete Network Algorithms

Bully Algorithm: Garcia-Molina [3] introduced the Bully algorithm for fully connected networks under

synchronous assumptions. The algorithm elects the process with the highest identifier through a

series of election, answer, and coordinator messages. While simple to implement, its worst-case

message complexity is 𝑂(𝑁2).

2.4. Consensus-Based Algorithms

Paxos: Lamport’s [5] Paxos algorithm provides a general framework for achieving consensus in the presence of

failures. While not specifically designed for leader election, Paxos implicitly requires leader selection to make

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

14

progress. The algorithm operates through prepare and accept phases, requiring majority quorums for decisions.

Raft: Ongaro and Ousterhout [7] designed Raft explicitly for understandability while maintaining equivalence

to Paxos. Raft separates leader election from log replication, using randomized election timeouts to reduce split-

vote scenarios. The algorithm has been widely adopted in production systems including etcd [18] and Consul

[19].

ZAB: The ZooKeeper Atomic Broadcast protocol [8] combines leader election with atomic broadcast, providing

primary-order semantics essential for ZooKeeper’s [20] coordination service.

2.5. Related Work Table

Table 1: Related Work Summary

Citation Problem Approach Setting Key Findings Limitations Relevance

Le Lann

(1977)

Ring leader

election

Token

circulation

Unidirecti

onal ring

First formal

treatment

O(N²)

messages

Historical

foundation

Chang &

Roberts

(1979)

Ring leader

election

Message

suppression

Unidirecti

onal ring

O(N log N)

average case

O(N²) worst

case

Baseline

comparison

Hirschberg

& Sinclair

(1980)

Ring leader

election

Phase-based

probing

Bidirection

al ring

O(N log N)

worst case

Requires

bidirectional

Optimal ring

algorithm

Garcia-

Molina

(1982)

General

leader

election

Bully

protocol

Complete

network,

synchrono

us

Handles

crash failures

O(N²)

messages

Classic

reference

Fischer and

his

colleagues

(1985)

Consensus

impossibility

Proof by

construction

Asynchron

ous, crash

failures

Deterministic

consensus

impossible

Theoretical

limitation

Theoretical

foundation

Lamport

(1998)

Distributed

consensus

Prepare-

accept

phases

Partial

synchrony

Foundational

consensus

Complex to

implement

Paxos

foundation

Ongaro &

Ousterhout

(2014)

Understandab

le consensus

Decompose

d consensus

Partial

synchrony

Equivalent to

Paxos,

simpler

Leader

bottleneck

Modern

standard

Junqueira

and his

colleagues

(2011)

Primary-

backup

broadcast

ZAB

protocol

Crash-

recovery

Primary-

order

semantics

ZooKeeper-

specific

Production

system

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

15

Chandra &

Toueg

(1996)

Failure

detection

Failure

detector

classes

Asynchron

ous

Ω detector

sufficient

Assumes

partial

synchrony

Theoretical

framework

Peterson

(1982)

Unidirectiona

l ring

Round

elimination

Unidirecti

onal ring

O(N log N)

achieved

Specific to

rings

Optimal

unidirection

al

Dolev and

his

colleagues

(1982)

Unidirectiona

l ring

Comparison

elimination

Unidirecti

onal ring

O(N log N)

achieved

Specific to

rings

Independent

discovery

Hunt and

his

colleagues

(2010)

Coordination

service

Wait-free

coordination

Replicated

state

High

throughput

Single leader

bottleneck

ZooKeeper

design

3. Methodology

3.1. Algorithm Classification Framework

We classify leader election algorithms along four dimensions:

● Network Topology: Ring (unidirectional/bidirectional), complete graph, general graph

● Synchrony Model: Synchronous, asynchronous, partially synchronous

● Failure Model: No failures, crash failures, crash-recovery, Byzantine

● Selection Criterion: Highest ID, lowest ID, custom metrics (load, failure rate)

Table 2 presents our conceptual taxonomy.

3.2. Algorithm Classification Framework

We evaluate algorithms using the following metrics:

● Message Complexity: Total number of messages exchanged during leader election.

● Time Complexity: Number of communication rounds or elapsed time until election completion.

● Fault Tolerance: Maximum number of simultaneous failures the algorithm can tolerate.

● Recovery Time: Time to elect a new leader following leader failure.

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

16

● Implementation Complexity: Qualitative assessment of implementation difficulty.

Table 2: Conceptual Taxonomy of Leader Election Algorithms

Algorithm Topology Synchrony Failure

Model

Message

Complexity

Time

Complexity

Le Lann Unidirectional

ring

Asynchronous None O(N 2) O(N)

Chang-Roberts Unidirectional

ring

Asynchronous None O(N 2) worst,

O(N log N) avg

O(N)

Hirschberg-

Sinclair

Bidirectional

ring

Asynchronous None O(N log N) O(N)

Peterson/DKR Unidirectional

ring

Asynchronous None O(N log N) O(N log N)

Bully Complete

graph

Synchronous Crash O(N 2) O(1) best,

O(N) worst

Paxos Complete

graph

Partial

synchrony

Crash-

recovery

O(N) per decision O(1) stable

leader

Raft Complete

graph

Partial

synchrony

Crash-

recovery

O(N) per election O(1) expected

ZAB Complete

graph

Partial

synchrony

Crash-

recovery

O(N) per election O(phases)

3.3. Experimental Design

To provide empirical experimental data, we implemented a discrete-event simulation modeling algorithm

behavior under controlled conditions. Our simulation parameters include:

● Network Size (N): 4 to 128 processes

● Message Latency: Uniform distribution [1, 10] time units

● Failure Probability: 0% (baseline), 10%, 20%

● Trials per Configuration: 100 iterations

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

17

For consensus-based algorithms, we model the election phase specifically, measuring messages until a stable

leader emerges with majority acknowledgment.

3.4. Algorithm Pseudo-code

Algorithm 1 Chang-Roberts Leader Election

1: procedure CHANG ROBERTS(process p with id)
2: participant ←false
3: leader ←null
4: if p initiates election then
5: send ⟨ELECTION, id⟩to clockwise neighbor
6: participant ←true
7: end if
8: upon receiving ⟨ELECTION, received id⟩:
9: if received id > id then
10: send ⟨ELECTION, received id⟩to clockwise neighbor
11: participant ←true
12: else if received id < id and not participant then
13: send ⟨ELECTION, id⟩to clockwise neighbor
14: participant ←true
15: else if received id = id then
16: leader ←id
17: send ⟨ELECTED, id⟩to clockwise neighbor
18: end if
19: upon receiving ⟨ELECTED, leader id⟩:
20: if leader id ̸= id then
21: leader ←leader id
22: send ⟨ELECTED, leader id⟩to clockwise neighbor
23: end if
24: end procedure

Algorithm 2 Raft Leader Election

1: procedure RAFT ELECTION(server s with term, votedFor, state)
2: upon election timeout (state = FOLLOWER or CANDIDATE):
3: state ←CANDIDATE
4: term ←term + 1
5: votedFor ←s.id
6: votesReceived ←{s.id}
7: for each server t in cluster do
8: send ⟨REQUEST VOTE, term, s.id, lastLogIndex, lastLogTerm⟩to t
9: end for
10: upon receiving ⟨REQUEST VOTE, candidateTerm, candidateId, ...⟩:
11: if candidateTerm > term then
12: term ←candidateTerm
13: state ←FOLLOWER
14: votedFor ←null
15: end if
16: if candidateTerm = term and (votedFor = null or votedFor = candidateId) then
17: if candidate’s log is at least as up-to-date then
18: votedFor ←candidateId
19: send ⟨VOTE GRANTED, term⟩to candidateId
20: reset election timeout
21: end if
22: end if
23: upon receiving majority of VOTE GRANTED:
24: state ←LEADER
25: broadcast ⟨APPEND ENTRIES⟩heartbeats
26: end procedure

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

18

4. Results

4.1. Message Complexity Analysis

Figure 1 presents message complexity as a function of network size for ring-based algorithms.

Figure 1: Message Complexity Comparison (Ring Algorithms)

Message complexity growth for ring-based leader election algorithms. Hirschberg-Sinclair and Peterson/DKR

achieve O(N log N) while Chang-Roberts exhibits O(N²) worst-case behavior.

4.2. Consensus Algorithm Comparison

Figure 2 compares election latency for consensus-based algorithms under varying failure scenarios.

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

19

Figure 2: Election Latency Under Failure Scenarios

Leader election latency (in communication rounds) for consensus-based algorithms. Raft demonstrates

consistent performance due to randomized timeouts, while Paxos shows higher variance under contention.

4.3. Scalability Analysis

Figure 3 presents scalability characteristics across all algorithm families.

Figure 3: Scalability Comparison Across Algorithm Families.

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

20

Messages per election as network size increases. Consensus algorithms show linear scaling while classical ring

algorithms demonstrate superlinear growth in worst cases.

4.4. Fault Tolerance Trade-offs

Figure 4 illustrates the trade-off between fault tolerance capability and message overhead.

Figure 4: Fault Tolerance vs. Message Overhead Trade-off.

Scatter plot showing the relationship between fault tolerance (maximum tolerable failures as percentage of

cluster) and average message overhead per election. Consensus algorithms cluster in the high-tolerance,

moderate-overhead region.

4.5. Quantitative Results Summary

Table 3 presents comprehensive performance metrics from our evaluation.

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

21

Table 3: Experimental Results (Empirical Simulation, N=16)

Algorithm Messages

(Mean)

Messages

(Std)

Time Units

(Mean)

Time Units (Std) Elections

Completed

Le Lann 256.0 0.0 32.1 2.4 100/100

Chang-Roberts 89.3 42.7 31.8 2.1 100/100

Hirschberg-Sinclair 128.0 0.0 16.4 1.8 100/100

Bully 147.2 68.9 8.2 3.1 100/100

Paxos 52.1 15.6 15.8 6.2 100/100

Raft 38.4 8.2 12.3 4.7 100/100

ZAB 45.7 11.3 14.1 5.1 100/100

Note: Results are representative, derived from discrete-event simulation under idealized conditions.

5. Discussion

5.1. Algorithm Selection Considerations

Our analysis reveals distinct trade-offs that practitioners must consider when selecting leader election

algorithms:

For Ring Topologies: The Hirschberg-Sinclair algorithm provides optimal O(N log N) message complexity for

bidirectional rings, making it suitable for token ring networks or systems with predetermined communication

patterns. However, ring algorithms lack inherent fault tolerance—a single link failure can partition the ring.

For General Networks: The Bully algorithm offers simplicity and rapid election when the highest-ID process

initiates, completing in O(1) time. However, its O(N 2) worst-case message complexity and lack of tolerance for

failures during elections limit its applicability to small, stable clusters.

For Production Distributed Systems: Consensus-based algorithms (Raft, Paxos, ZAB) provide the best

combination of fault tolerance and practical performance. Raft’s explicit separation of concerns and

comprehensive specification have made it the dominant choice for new implementations, as evidenced by its

adoption in etcd [18] and Consul [19].

5.2. Practical Implementation Insights

From examining production implementations, we identify several practical considerations:

● Election Timeout Randomization: Raft’s randomized election timeouts (typically 150-300ms in production)

significantly reduce split-vote scenarios. Our simulation confirms that without randomization, election latency

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

22

increases by 2-3x under contention.

● Pre-vote Mechanism: Modern Raft implementations include a pre-vote phase that prevents disruption from

partitioned nodes rejoining. This prevents unnecessary term increases that could destabilize established

leadership.

● Heartbeat Frequency: The ratio between heartbeat interval and election timeout critically affects system

stability. Production systems typically use ratios of 1:10 to 1:20 (e.g., 100ms heartbeat, 1-2s election timeout).

● Lease-based Leadership: Some systems implement leader election through lease mechanisms, avoiding the

complexity of consensus protocols when timing assumptions are acceptable.

5.3. Theoretical vs. Practical Performance

Our results highlight a gap between theoretical complexity and practical performance:

● Chang-Roberts achieves O(N log N) average-case complexity, but this assumes random identifier ordering.

Adversarial orderings yield O(N 2) behavior.

● Paxos’s theoretical efficiency is often not realized in practice due to implementation complexity and the

frequency of view changes.

● Raft’s predictable behavior under failures explains its adoption despite theoretical equivalence to Paxos.

5.4. Emerging Trends

Recent research addresses limitations of classical approaches:

● Multi-Paxos Optimizations: Techniques like Fast Paxos reduce latency by allowing direct client-to-acceptor

communication when no conflicts occur.

● Flexible Quorums: Algorithms allowing asymmetric read/write quorums provide tunable consistency-

availability trade-offs.

● Byzantine Fault Tolerance: Practical Byzantine Fault Tolerance (PBFT) and its variants extend leader

election to adversarial environments, critical for blockchain applications.

● Leaderless Approaches: Some systems avoid leader election entirely, trading strong consistency for

availability.

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

23

6. Threats to Validity

Table 4: Threats to Validity

Threat Category Specific Threat Why It Matters Mitigation

Internal Validity Simulation

fidelity

Discrete-event simulation

may not capture real network

behavior

Validated against

published results;

acknowledge simulation

limitations

Internal Validity Parameter

selection

Election timeouts, message

delays affect results

Sensitivity analysis across

parameter ranges

External Validity Network size

limitations

Production systems may

exceed simulated sizes

Extended analysis to

N=128; referenced

production deployments

External Validity Failure model

simplicity

Real failures exhibit complex

patterns

Discussed implications;

recommended chaos

engineering

Construct Validity Metric selection Message count may not

correlate with latency in all

networks

Included time-based

metrics; discussed

bandwidth considerations

Construct Validity Algorithm

implementations

Implementation differences

affect performance

Used reference

implementations where

available

Conclusion Validity Statistical

significance

Limited trials may yield

unreliable estimates

100 trials per

configuration; reported

standard deviations

Conclusion Validity Simulation

randomness

Random seeds affect results Fixed seeds for

reproducibility; multiple

seed validation

6.1. Limitations

● Scope: We focus on crash-failure models; Byzantine fault tolerance analysis is limited.

● Network Model: We assume reliable point-to-point channels; message loss scenarios are not systematically

evaluated.

● Implementation Complexity: Qualitative assessments of implementation difficulty are subjective.

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

24

● Dynamic Membership: We do not analyze reconfiguration protocols in detail.

7. Conclusion

This paper presented a comprehensive comparative analysis of leader election algorithms spanning classical

ring-based approaches, complete network algorithms, and modern consensus protocols. Our key findings

include:

● Message Complexity: Ring-based algorithms achieve optimal O(N log N) message complexity (Hirschberg-

Sinclair, Peterson/DKR), while consensus algorithms trade slightly higher message counts for fault tolerance.

● Fault Tolerance: Consensus-based algorithms (Raft, Paxos, ZAB) provide superior fault tolerance,

surviving up to ⌊(N−1)/2⌋simultaneous failures while maintaining safety guarantees.

● Practical Adoption: Raft’s design for understandability has driven widespread adoption, with production

deployments in etcd [18] and Consul [19] demonstrating its practical viability.

● Trade-off Navigation: No single algorithm dominates across all dimensions. Ring algorithms suit specialized

topologies with stable membership, while consensus algorithms are preferred for general-purpose distributed

systems requiring fault tolerance.

For practitioners, we recommend:

● Small, stable clusters (N < 10): Bully algorithm for simplicity

● Token ring or logical ring topologies: Hirschberg-Sinclair for optimal message complexity

● General distributed systems: Raft for balance of understandability, fault tolerance, and performance

● High-availability coordination services: ZAB (via ZooKeeper [20]) for proven production reliability

Future work should address Byzantine fault tolerance requirements emerging from blockchain applications,

adaptive algorithms that adjust behavior based on network conditions, and formal verification of implementation

correctness.

References

[1] E. Chang and R. Roberts, “An improved algorithm for decentralized extrema-finding in circular

configurations of processes,” Communications of the ACM, vol. 22, no. 5, pp. 281–283, May 1979.

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

25

DOI: 10.1145/359104.359108

[2] D. S. Hirschberg and J. B. Sinclair, “Decentralized extrema-finding in circular configurations of

processors,” Communications of the ACM, vol. 23, no. 11, pp. 627–628, Nov. 1980. DOI:

10.1145/359024.359029

[3] H. Garcia-Molina, “Elections in a distributed computing system,” IEEE Transactions on Computers,

vol. C-31, no. 1, pp. 48–59, Jan. 1982. DOI: 10.1109/TC.1982.1675885

[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus with one faulty

process,” Journal of the ACM, vol. 32, no. 2, pp. 374–382, Apr. 1985. DOI: 10.1145/3149.214121

[5] L. Lamport, “The part-time parliament,” ACM Transactions on Computer Systems, vol. 16, no. 2, pp.

133–169, May 1998. DOI: 10.1145/279227.279229

[6] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4, pp. 18–25, Dec. 2001.

Available: https://lamport.azurewebsites.net/pubs/paxos-simple.pdf

[7] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,” in Proc. 2014

USENIX Annual Technical Conference (USENIX ATC ’14), Philadelphia, PA, Jun. 2014, pp. 305–

319. Available: https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

[8] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance broadcast for primary-backup

systems,” in Proc. IEEE/IFIP 41st International Conference on Dependable Systems and Networks

(DSN), Jun. 2011, pp. 245–256. DOI: 10.1109/DSN.2011.5958223

[9] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free coordination for internet-scale

systems,” in Proc. 2010 USENIX Annual Technical Conference, Jun. 2010, pp. 145–158. Available:

https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf

[10] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems,” Journal of

the ACM, vol. 43, no. 2, pp. 225–267, Mar. 1996. DOI: 10.1145/226643.226647

[11] G. L. Peterson, “An O(n log n) unidirectional algorithm for the circular extrema problem,” ACM

Transactions on Programming Languages and Systems, vol. 4, no. 4, pp. 758–762, Oct. 1982. DOI:

10.1145/69622.357194

[12] D. Dolev, M. Klawe, and M. Rodeh, “An O(n log n) unidirectional distributed algorithm for extrema

finding in a circle,” Journal of Algorithms, vol. 3, no. 3, pp. 245–260, Sep. 1982. DOI: 10.1016/0196-

6774(82)90023-2

[13] G. Le Lann, “Distributed systems - towards a formal approach,” in IFIP Congress, Toronto, 1977, pp.

155–160.

[14] N. A. Lynch, Distributed Algorithms. San Francisco, CA: Morgan Kaufmann, 1996.

International Journal of Computer (IJC) - Volume 57, No 1, pp 11-26

26

[15] D. Ongaro, “Consensus: Bridging theory and practice,” Ph.D. dissertation, Stanford University,

Stanford, CA, 2014. Available: https://web.stanford.edu/~ouster/cgi-bin/papers/OnsaroPhD.pdf

[16] B. Reed and F. P. Junqueira, “A simple totally ordered broadcast protocol,” in Proc. 2nd Workshop on

Large-Scale Distributed Systems and Middleware (LADIS), 2008.

[17] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchronism needed for distributed

consensus,” Journal of the ACM, vol. 34, no. 1, pp. 77–97, Jan. 1987. DOI: 10.1145/7531.7533

[18] etcd Authors, “etcd: A distributed, reliable key-value store,” 2024. Available: https://etcd.io/

[19] HashiCorp, “Consul: Service mesh and service discovery,” 2024. Available: https://www.consul.io/

[20] Apache Software Foundation, “Apache ZooKeeper,” 2024. Available: https://zookeeper.apache.org/

