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Abstract 

TLS/SSL certificates are a foundational trust primitive in modern digital infrastructures, yet certificate-related 

outages persist despite the widespread adoption of monitoring tools and enterprise certificate lifecycle 

management platforms. This paper addresses this puzzle by (1) classifying and analyzing existing certificate 

monitoring and management approaches to identify their systematic architectural limitations; (2) designing an 

alternative automated monitoring method that targets these gaps by rethinking certificate discovery; and (3) 

evaluating its effectiveness relative to conventional approaches using controlled cyber-threat modeling in a 

virtualized environment. We develop a human-error-aware simulation that applies identical, time-indexed 

infrastructure change events to multiple monitoring architectures across legacy and cloud scenarios, enabling 

direct comparison of inventory completeness, omission risk, and discovery latency. The results show that 

configuration-bound monitoring approaches degrade with infrastructure scale and dynamism, whereas an auto-

discovery model grounded in L7 load balancer and front-end state maintains substantially higher visibility and 

lower omission rates, particularly in cloud environments. These findings suggest that reducing “unknown 

certificate” risk requires architectural innovation in discovery mechanisms rather than incremental improvements 

to configuration discipline, with important implications for organizational risk management and national 

cybersecurity resilience. 
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1. Introduction 

TLS/SSL certificates are a foundational trust mechanism in modern distributed systems, providing confidentiality, 

service authentication, and integrity of data in transit. They underpin public websites, internal enterprise services, 

APIs, and machine-to-machine communication. Their scale is substantial: in 2025, Let’s Encrypt alone serves 

over 700 million websites worldwide, issuing up to 10 million certificates per day [1]. Browser telemetry confirms 

this transition to ubiquitous encryption: HTTPS accounts for over 85% of page loads in major browsers, including 

Chromium-based clients, reflecting the near-universal enforcement of encrypted transport at the application layer 

Reference [2]. 

Concurrently, the infrastructure environment in which certificates are deployed has undergone significant 

transformation. The widespread adoption of cloud computing, microservice-based architectures, containerization, 

and Infrastructure as Code (IaC) practices has dramatically increased both the number of certificates in use and 

the complexity of their lifecycle management. Certificates are no longer tied to a small, stable set of long-lived 

hosts but instead proliferate across ephemeral virtual machines, containers, load balancers, and dynamically 

created environments. Regulatory and governance developments have further intensified this pressure. Under the 

CA/Browser Forum Baseline Requirements, the maximum validity period for publicly trusted TLS certificates 

has already been reduced to 398 days. Moreover, the SC-081 ballot adopted in 2025 mandates a phased reduction 

of certificate lifetimes to approximately 47 days by 2029 [3]. 

Failures in certificate lifecycle management have immediate and often severe operational consequences. An 

expired or misconfigured certificate typically results in service outages or significant degradation of availability 

due to failed TLS handshakes or client-side security errors. The prevalence of such incidents is well documented 

in industry-wide empirical studies. In a large-scale survey of approximately 1,200 organizations, 72% of 

respondents experienced at least one certificate-related outage in the past year, with 67% reporting monthly 

disruptions and 45% facing them weekly [4]. The cost of downtime is staggering: industry analysis pegs the cost 

at around $9,000 per minute of outage, which can translate to losses of several million dollars for a multi-hour 

outage caused by an expired certificate [5]. 

In response, a distinct market segment has emerged around certificate lifecycle management (CLM) and PKI 

platforms, offering centralized inventories, automated issuance and rotation, and policy-based governance. 

Existing solutions range from lightweight expiration monitors for predefined domains to enterprise-grade 

CLM/PKI platforms (such as those offered by DigiCert, Entrust, and Sectigo) providing centralized control and 

CA integration. Many tools incorporate auto-discovery mechanisms — such as network scanning, imports from 

CA and cloud provider APIs, and integrations with certificate transparency logs — to address incomplete 

visibility. However, these tools are often limited in scope, configuration-intensive, or poorly aligned with highly 

dynamic IaC-driven environments. A growing corpus of research underscores that while automation adoption 

reduces human error and improves compliance, it introduces architectural and governance complexities that 

remain insufficiently resolved in practice [6, 7, 8]. 

This tension motivates the central puzzle of this study: why do certificate-related incidents persist despite 
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widespread adoption of specialized CLM tools and auto-discovery mechanisms, particularly in dynamic IaC-

oriented infrastructures? What structural and technical limitations prevent existing approaches from reliably 

reducing TLS/SSL-related availability and security risks, and how can these limitations be addressed? To answer 

these questions, we (1) classify and analyze existing certificate monitoring and management approaches to 

identify systematic limitations; (2) design an alternative automated monitoring method, EmTool, targeting these 

gaps; and (3) evaluate its effectiveness relative to conventional approaches using controlled cyber-threat modeling 

in a virtualized environment. 

2. Existing Approaches to TLS Certificate Monitoring and Management 

The evolution of large-scale distributed infrastructures and the tightening of security governance requirements 

have led to the emergence of a diverse ecosystem of tools concerned with TLS certificate monitoring and lifecycle 

management. These tools can be grouped into three analytically distinct classes, which differ in architectural 

assumptions, scope of visibility, and reliance on automation: (1) lightweight monitoring services and utilities; (2) 

certificate monitoring functionality embedded in traditional infrastructure monitoring systems; and (3) enterprise-

grade certificate lifecycle management (CLM) and machine identity platforms. Below, each class is examined 

with respect to its functional capabilities, typical deployment context, and systematic limitations. 

2.1. Lightweight Monitoring Services and Utilities 

The simplest and historically earliest approach to TLS certificate monitoring relies on lightweight services or 

utilities that periodically check the status of certificates for a predefined set of domain names. In this model, 

operators manually enumerate domains of interest, after which the tool establishes TLS connections to 

corresponding endpoints and extracts certificate metadata, most notably the expiration date. Alerts are triggered 

when the remaining validity period falls below a configured threshold. From an operational perspective, this 

approach offers clear advantages: minimal setup cost, no requirement for infrastructure deployment, and rapid 

adoption for monitoring publicly exposed services. Similar mechanisms are discussed in early operational studies 

of HTTPS deployment, where manual certificate tracking was common in small-scale environments [9]. 

However, the architectural premise of this class is explicit enumeration. A certificate is monitored only if its 

associated domain is known in advance and manually registered. Empirical studies of configuration drift and 

shadow infrastructure demonstrate that this assumption rarely holds in practice, even in moderately complex 

systems [10]. Temporary environments, internal APIs, ad hoc subdomains, and short-lived test deployments 

frequently escape manual inventories. Even research surveys focused on industrial or embedded networking 

contexts confirm that rudimentary checks cannot scale to dynamic environments where certificates are frequently 

created, deprecated, or reassigned without centralized tracking [11]. Consequently, despite their utility for 

targeted monitoring of selected public domains, these tools fail to provide a comprehensive inventory of 

certificates across heterogeneous infrastructures. 

2.2. Certificate Monitoring in Traditional Infrastructure Monitoring Systems 

A more structured approach integrates certificate monitoring into classical infrastructure monitoring frameworks 
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such as Nagios, Zabbix, and Prometheus. In these systems, plugins or exporters extract certificate attributes (e.g., 

validity period, issuer, and subject) as part of routine service availability checks. The extracted data are 

represented as metrics and evaluated against alerting rules. Research into automation of certificate lifecycle tasks 

emphasizes that embedding certificate status checks within broader observability systems improves operational 

awareness and aligns TLS monitoring with other performance and reliability metrics [12]. 

Nevertheless, this class of solutions inherits a core limitation from lightweight tools: visibility is constrained by 

configuration. A certificate is monitored only if the corresponding endpoint is explicitly defined in the monitoring 

system. While some platforms support limited forms of auto-discovery (such as template-based checks or 

scanning predefined address ranges), these mechanisms require careful manual configuration and are typically 

secondary features. In IaC-oriented infrastructures, where services and endpoints are created and destroyed 

continuously, monitoring configurations frequently lag behind actual system state. Empirical research on 

configuration drift in cloud environments shows that such lag — caused by divergence between Infrastructure as 

Code definitions and runtime states — is a dominant source of monitoring blind spots, particularly for ephemeral 

or experimental resources [13]. Thus, while such integrations enhance operational efficiency for known assets, 

they do not resolve the core challenge of dynamic certificate inventory in ephemeral or IaC-driven environments. 

2.3. Enterprise Certificate Lifecycle and Machine Identity Management Platforms 

The third and most functionally comprehensive class consists of enterprise-oriented certificate lifecycle 

management and machine identity platforms. These systems aim to provide centralized inventories, automate the 

full certificate lifecycle (from request and issuance to deployment, rotation, and revocation) and enforce policy 

across hybrid and distributed infrastructures. This category includes both traditional CLM/PKI platforms and 

cloud- or DevOps-oriented enterprise systems integrated with orchestrators, load balancers, and cloud-native 

certificate services. A defining feature of this class is the extensive use of auto-discovery mechanisms. Platforms 

combine active network scanning, agent-based collection, imports from certificate authority logs, cloud provider 

APIs, and analysis of TLS termination points such as load balancers and reverse proxies. Some systems 

additionally leverage Certificate Transparency logs to detect certificates issued outside centralized processes [14]. 

At a conceptual level, enterprise platforms come closest to addressing the visibility problem identified in prior 

work on PKI mismanagement [9]. However, empirical and qualitative studies of enterprise security tooling reveal 

several persistent structural limitations. First, effective discovery remains contingent on deep integration with 

network inventories, orchestration services, and organizational metadata; without tight coupling to authoritative 

service registries, auto-discovery mechanisms produce incomplete inventories, especially in contexts with 

segmented networks, multiple cloud tenants, or transient workloads [15].Second, while automation protocols such 

as the Automatic Certificate Management Environment (ACME) provide standardized mechanisms for certificate 

issuance, their applicability is largely limited to automated CA interactions and does not, by itself, address cross-

domain inventory and policy enforcement across heterogeneous certificate sources. Third, organizational factors 

remain critical. Enterprise platforms require disciplined onboarding of new environments, consistent ownership 

assignment, and continuous synchronization between architectural changes and platform configuration. Research 

on human and organizational dimensions of security consistently shows that such discipline is difficult to sustain 
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over time, leading to persistent gaps even in technically advanced systems [16, 17]. 

Table 1: Classes of TLS Certificate Management Tools and Systematic Limitations 

Tool class Primary focus and 

strengths 

Typical scope and 

deployment context 

Systematic limitations 

Lightweight monitoring 

services and utilities 

Rapid deployment; low 

operational overhead; 

basic expiration alerts 

for public certificates 

External-facing 

domains; small or 

medium 

infrastructures; 

auxiliary monitoring 

for critical services 

Full dependence on manual 

domain enumeration; no 

systemic auto-discovery; no 

coverage of internal, 

ephemeral, or ad hoc services; 

high sensitivity to human 

error 

Certificate monitoring in 

traditional infrastructure 

monitoring systems 

(Nagios/Zabbix/Prometheus) 

Integration with 

existing monitoring 

dashboards and 

alerting; unified 

escalation workflows 

Known services and 

endpoints; relatively 

stable infrastructures 

Coverage depends entirely on 

explicit configuration; limited 

and manual auto-discovery; 

weak support for IaC-driven 

dynamics; human factors 

determine inventory 

completeness 

Enterprise CLM and machine 

identity platforms 

Centralized inventory; 

full lifecycle 

automation; multiple 

discovery channels; CA 

and cloud integrations 

Large organizations; 

hybrid and multi-

cloud infrastructures; 

formalized security 

governance 

High configuration and 

integration complexity; 

incomplete visibility of 

temporary and high-churn 

environments; fragmented 

inventories across domains; 

strong dependence on 

sustained organizational 

discipline 

3. EmTool as an Alternative Monitoring Model 

The comparative analysis summarized in Table 1 reveals a consistent structural pattern across existing classes of 

TLS certificate monitoring and management tools. Lightweight utilities, classical infrastructure monitoring 

systems, and enterprise CLM platforms differ substantially in scope and sophistication, yet all rely (explicitly or 

implicitly) on incomplete discovery mechanisms and sustained manual coordination. In each class, certificate 

visibility ultimately depends on either explicit enumeration, configuration-bound monitoring targets, or complex 

integrations whose coverage must be continuously maintained. As infrastructure scale and dynamism increase, 

these assumptions systematically break down, producing unmanaged or “unknown” certificates even in 

environments with advanced tooling. 
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This observation motivates the development of an alternative automated monitoring method that rethinks 

certificate discovery as a first-order design problem rather than an auxiliary feature. he central premise of the 

proposed approach is that certificate inventories should not be derived from operator-curated domain lists or static 

monitoring configurations, but from infrastructure components that objectively reflect which services are actively 

terminating TLS traffic. To address these requirements, we design EmTool, an enterprise-oriented TLS/SSL and 

domain monitoring platform focused on automated discovery and continuous validation of certificates at scale. 

The design of EmTool is guided by four principles derived directly from the limitations identified in existing 

approaches: 

 Real TLS termination points (most notably load balancers and web front ends) are treated as the primary 

source of truth for certificate discovery, rather than manually enumerated domains.   

 Auto-discovery must operate uniformly across cloud, on-premises, virtualized, and bare-metal 

environments.  

 The number of manual actions required to onboard and maintain coverage must be minimized, as 

organizational discipline has been shown to be difficult to sustain over time. 

 Certificate validation must operate at the level of complete TLS chains and integrate seamlessly with 

existing monitoring stacks to preserve established operational workflows. 

3.1. System Architecture 

EmTool is implemented as a multi-component platform composed of thirteen microservices written in Go. Each 

microservice is responsible for a narrowly scoped function — data collection, auto-discovery, inventory 

normalization and storage, TLS chain validation, integration with external systems, and API exposure — 

communicating through internal APIs and message queues. This modular architecture enables horizontal scaling 

of discovery and validation components as the number of monitored endpoints and certificates grows. At the core 

of the platform is a TLS validation engine that actively probes discovered endpoints and reconstructs the full trust 

chain from the leaf certificate to the root. Validation includes checks of certificate validity periods, cryptographic 

algorithms, key lengths, hostname matching, and intermediate certificate correctness. By validating the entire 

chain rather than only the leaf certificate, EmTool detects misconfigurations that often remain latent until 

expiration or client-side enforcement failures occur. 

The platform can be deployed either as a cloud-hosted service or on-premises within a customer’s infrastructure, 

accommodating regulatory and data-locality constraints. To execute checks from appropriate network vantage 

points, EmTool uses lightweight agents (referred to as gates) deployed within customer environments (e.g., as 

Docker containers). Gates initiate TLS checks locally and transmit structured results to the central services, 

allowing discovery and validation to respect network segmentation and access boundaries. 

3.2. Auto-Discovery via Load Balancers and Front-End Configurations 

The defining feature of EmTool is its auto-discovery model, which is built around load balancers and front-end 

configurations as the most reliable indicators of which services are actually exposed and terminating TLS traffic. 
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In cloud environments, EmTool provides provider-specific integrations deployed via Infrastructure-as-Code 

tooling. Once installed in a cloud account, an auto-discovery add-on continuously queries cloud APIs to import 

load balancers, listeners, associated domains, and bound certificates, and then tracks configuration changes over 

time. Creation or removal of services, modification of listener configurations, and certificate updates are 

automatically propagated into the EmTool inventory without manual intervention. In this model, the load balancer 

effectively functions as a centralized registry of externally reachable services. 

For legacy and on-premises environments, where no centralized cloud API exists, EmTool combines two 

mechanisms. First, gate agents deployed within relevant network segments perform localized discovery and 

validation of TLS endpoints. Second, EmTool includes a dedicated integration module for Nginx that subscribes 

to configuration change events. Upon each configuration update, the module parses virtual host definitions and 

TLS settings and transmits an updated set of domains and endpoints to EmTool. This approach is particularly 

important for bare-metal and virtualized systems, where front-end configurations remain the most faithful 

representation of actively served domains. By anchoring discovery to load balancers and front-end configurations, 

EmTool avoids reliance on arbitrary domain lists and instead derives its inventory from components that directly 

govern traffic flow. This design sharply reduces the number of operator actions required to maintain coverage 

and shifts omission risk from human enumeration to machine-level discovery fidelity. 

3.3. Continuous Inventory Maintenance and Monitoring Integration 

At the inventory level, EmTool maintains continuous synchronization with its discovery sources. Domain names 

are automatically added and removed based on DNS data and front-end configurations, while certificates enter or 

exit the inventory as they appear or disappear in the infrastructure. This eliminates the need for manual lifecycle 

bookkeeping and ensures that the inventory reflects the current operational state rather than an administratively 

maintained snapshot. Active TLS validation is performed continuously. While operators may specify individual 

hostnames explicitly, the dominant source of monitored endpoints is automated discovery. Validation results can 

be inspected directly within the EmTool interface or exported into existing monitoring systems such as Zabbix, 

Prometheus, or Dynatrace. In these integrations, EmTool acts as an external metric provider, supplying certificate 

and domain expiration data while preserving existing alerting logic and escalation procedures. This design choice 

lowers adoption barriers and minimizes disruption to established operational practices. 

3.4. Formal Model of Discovery Errors 

To compare EmTool with monitoring-based approaches analytically, we model certificate omission as the 

outcome of two distinct error-generating processes: human-mediated configuration actions and machine-mediated 

auto-discovery. 

Let 𝑁 denote the number of TLS-terminating services present in the infrastructure. For each service 𝑖, we define 

a binary variable 𝑂𝑖 , where 𝑂𝑖 = 1 indicates that the certificate is omitted from monitoring. In monitoring-centric 

approaches, each service introduction typically induces one or more manual actions. Let 𝑘𝑖 denote the number of 

such actions for service 𝑖, and let 𝑝ℎ denote the probability that a single action results in an omission-relevant 
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error. The probability of omission due to human error is therefore 1 − (1 −  𝑝ℎ)𝑘𝑖 , implying that expected 

omissions grow rapidly with infrastructure scale. 

In EmTool, manual actions are concentrated at the level of integration onboarding rather than per-service 

enumeration. Let 𝑝𝑒 denote the probability that automated discovery fails for a given service due to incomplete 

integration coverage or event-processing errors. Under stable integrations, the expected number of omissions 

scales approximately as 𝑁 ∙ 𝑝𝑒, decoupling omission risk from the number of services added. This formalization 

captures the architectural distinction between the approaches: monitoring-based systems scale omission risk with 

the number of human actions, whereas EmTool shifts risk toward machine-level discovery fidelity. This model 

also motivates two testable hypotheses: 

H1. As infrastructure scale increases, the expected number of certificate omissions grows significantly more 

slowly under EmTool than under monitoring-based approaches. 

H2. In cloud environments, a statistically significant fraction of certificates is discovered exclusively through 

load balancer and cloud API data, resulting in fewer omissions relative to monitoring-based approaches. 

4. Materials and Methods  

To evaluate the hypotheses, we employ a human-error-aware virtual infrastructure simulation designed to 

compare TLS certificate monitoring approaches under controlled yet realistic conditions. The simulation 

explicitly models how architectural differences in certificate discovery translate into inventory completeness, 

discovery latency, and omission risk under infrastructure dynamism and imperfect execution. Rather than 

benchmarking specific commercial products, the study compares four architectural treatment groups 

corresponding to the classes identified in Table 1, using identical infrastructure traces and ground-truth certificate 

sets. 

Infrastructure state includes services, domain names, TLS termination points, and certificates, as well as the 

relationships among them. Certificates are associated with one or more domains and are bound to specific 

termination points (e.g., web servers, reverse proxies, or load balancers). Infrastructure evolution is driven by a 

predefined sequence of events, including service creation and deletion, service reconfiguration, certificate 

issuance and renewal, and certificate expiration. The same event sequence is applied to all treatment groups. 

Each treatment group is implemented as a distinct discovery model that determines how certificates enter and 

leave the monitoring inventory in response to infrastructure events. Table 2 summarizes how each treatment group 

is operationalized in the simulation. 
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Table 2: Formal Modeling of Treatment Groups in the Simulation 

Dimension 

 

Lightweight 

monitoring services 

and utilities 

Traditional infrastructure 

monitoring systems 

Enterprise CLM 

and machine 

identity platforms 

EmTool (proposed) 

Primary 

discovery 

condition 

Domain explicitly 

presents in manual 

domain list 

Service endpoint explicitly 

presents in monitoring 

configuration 

Certificate located 

within an onboarded 

discovery scope 

Certificate bound to an 

integrated TLS 

termination point 

Formal 

inclusion rule 

𝐷𝑐(𝑡) = 1 ⟺ 𝑑 

∈ 𝐿(𝑡) 

𝐷𝑐(𝑡) = 1 ⟺

𝑀𝑠(𝑡) exists and is correct  

𝐷𝑐(𝑡) = 1 ⟺ 𝑐 

∈ ∪𝑗 𝐸𝑗(𝑡) 

𝐷𝑐(𝑡) = 1 ⟺ ∃𝑇 ∶ 𝑐

↔ 𝑇 ∧ 𝑇 integrated 

Trigger for 

discovery 

Manual list update Configuration update in 

monitoring system 

Periodic automated 

discovery within 

onboarded scopes 

Event-driven updates 

from termination 

configuration 

Human error 𝑝ℎ  per domain addition 𝑝ℎ per configuration action 𝑝ℎ  per scope 

onboarding 

𝑝ℎ  per termination 

integration 

Machine-level 

discovery error 

Not applicable Not applicable 𝑝𝑒  per certificate 

within scope 

𝑝𝑒  per certificate at 

termination 

Scaling of 

omission risk 

with 

infrastructure 

size 

Linear in number of 

domains 

Superlinear in number of 

services and changes 

Proportional to 

number of 

environments 

Approximately 

constant once 

terminations 

integrated 

All architectures are evaluated against identical synthetic infrastructures with complete ground-truth 

observability: 

 Legacy scenario: the infrastructure consists of multiple network segments hosting web services, reverse 

proxies, and internal APIs. TLS termination occurs primarily at web servers and proxies. Certificates are 

issued by both internal and external CAs. Services are dynamically added, migrated, and retired. 

 Cloud scenario: the infrastructure consists of cloud-managed L7 load balancers serving as the primary 

TLS termination points. Domains and certificates are bound to listeners and backend groups. The 

scenario includes multiple environments and frequent creation and teardown of services. 

For each scenario, a time-indexed ground-truth set of certificates 𝑁𝑡𝑟𝑢𝑒(𝑡) and a sequence of infrastructure change 

events are generated. These events include service creation, deletion, and migration; domain and routing 

reconfiguration; creation or modification of TLS termination points; and certificate lifecycle operations such as 

issuance, renewal, replacement, and expiration. Each event deterministically updates the infrastructure state and, 

consequently, the set of certificates actively bound to TLS termination points at time 𝑡. 

Against this evolving ground truth, each monitoring architecture produces a time-varying certificate inventory 

reflecting what is actually discovered and monitored. Comparing these inventories to the ground-truth set at each 
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time step allows us to quantify discovery completeness, omission risk, and detection latency under identical 

infrastructure dynamics. Table 3 summarizes the evaluation metrics used for this comparison. 

Table 3: Evaluation Metrics 

Metric 

 

Symbol/Formula Definition and interpretation 

Inventory coverage 
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  

𝑁𝑓𝑜𝑢𝑛𝑑

𝑁𝑡𝑟𝑢𝑒

 
Fraction of certificates present in the ground-truth 

infrastructure that are successfully discovered and included 

in the monitoring inventory. Values closer to 1 indicate 

more complete visibility. 

Number of missed 

certificates 

𝑁𝑚𝑖𝑠𝑠𝑒𝑑 =  𝑁𝑡𝑟𝑢𝑒 − 𝑁𝑓𝑜𝑢𝑛𝑑 

 

Absolute number of certificates that exist in the 

infrastructure but are not discovered by the monitoring 

approach. 

Missed certificate 

ratio 
𝑚𝑖𝑠𝑠𝑒𝑑_𝑟𝑎𝑡𝑖𝑜 =  

𝑁𝑚𝑖𝑠𝑠𝑒𝑑

𝑁𝑡𝑟𝑢𝑒

 
Proportion of certificates omitted from monitoring relative 

to the total number of certificates present in the 

infrastructure. 

Time to discovery 𝑇𝑑𝑖𝑠𝑐 Time elapsed between the moment a certificate appears in 

the infrastructure (e.g., issuance or binding to a TLS 

termination point) and the moment it is first detected by the 

monitoring system. Reported as mean and distribution 

across simulation runs. 

Sensitivity to human 

error 

𝑁𝑚𝑖𝑠𝑠𝑒𝑑(𝑝ℎ) Dependence of inventory coverage and number of missed 

certificates on the probability of human error. Used to 

compare how rapidly omission risk increases as human 

reliability decreases across treatment groups. 

Cloud-specific 

discovery contribution 
𝛼𝐿𝐵 =  

𝑁𝐿𝐵−𝑜𝑛𝑙𝑦

𝑁𝑡𝑟𝑢𝑒

 
Fraction of certificates discovered exclusively via load 

balancer configurations and cloud provider APIs. These 

certificates would remain undiscovered under monitoring-

based approaches for the same 𝑝ℎ 

5. Results 

Across both simulated infrastructure scenarios, the results provide strong and consistent support for both 

hypotheses. Figure 1 illustrates inventory coverage as a function of infrastructure scale for all four architectural 

treatment groups under legacy and cloud conditions. Two systematic patterns emerge. First, as infrastructure scale 

increases, monitoring-based architectures exhibit a pronounced degradation in certificate inventory coverage, 

whereas EmTool maintains near-complete visibility even under high churn. In the legacy scenario, lightweight 

monitoring utilities decline from approximately 81% coverage at small scale to roughly 62% at large scale, while 

traditional infrastructure monitoring drops from about 89% to 76%. Enterprise CLM platforms perform 

substantially better but still exhibit gradual erosion of coverage as scale increases, decreasing from approximately 
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94% to 91%. In contrast, EmTool remains stable and close to complete coverage across all scales, increasing 

slightly from about 97% at small scale to nearly 99% at large scale. This divergence widens monotonically with 

scale, indicating that omission risk compounds with the number of configuration-driven discovery actions 

required by monitoring-centered architectures. 

The same qualitative pattern is observed in the cloud scenario, although overall coverage levels are higher for all 

approaches. Lightweight utilities decline from approximately 83% to 67% as scale increases, and traditional 

monitoring decreases from about 91% to 81%. Enterprise CLM again shows strong but imperfect performance, 

with coverage decreasing modestly from roughly 95.5% to 93.6%. EmTool, by contrast, remains essentially 

invariant to scale, achieving coverage between 98% and 99.2% across all infrastructure sizes. The visual gap 

between EmTool and all comparator architectures increases with scale in both scenarios, directly supporting 

Hypothesis H1: the expected number of certificate omissions grows significantly more slowly under EmTool than 

under monitoring-based approaches. 

 

Figure 1: Inventory Coverage of TLS Certificates as a Function of Infrastructure Scale 

These visual trends are corroborated by formal statistical tests using the number of missed certificates as the 

dependent variable at large scale (Table 4). In both scenarios, two-sample Welch t-tests comparing EmTool to 
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each baseline architecture yield extremely large test statistics and vanishingly small p-values. In the legacy 

scenario, EmTool produces dramatically fewer omissions than lightweight utilities (t = 45.70, p < 1×10⁻²⁰, d = 

11.80), traditional monitoring (t = 34.57, p < 1×10⁻²⁰, d = 8.93), and enterprise CLM platforms (t = 22.21, p < 

1×10⁻¹⁵, d = 5.73). Analogous results hold in the cloud scenario, with EmTool again outperforming lightweight 

utilities (t = 41.92, p < 1×10⁻²⁰, d = 10.82), traditional monitoring (t = 31.06, p < 1×10⁻²⁰, d = 8.02), and enterprise 

CLM (t = 18.96, p < 1×10⁻¹², d = 4.89). All effect sizes are exceptionally large, indicating not only statistical 

significance but also substantive differences in omission risk. 

Table 4: Two-sample Welch t-test results (𝐾 = 30, 𝑁𝑡𝑟𝑢𝑒= 5000) 

Scenario Comparison (DV = 𝑵𝒎𝒊𝒔𝒔𝒆𝒅) 𝒕 df 𝒑 Effect size (Cohen’s 𝒅) 

Legacy EmTool vs Lightweight 45.70 29.27 < 1e-20 11.80 

Legacy EmTool vs Traditional monitoring 34.57 29.40 < 1e-20 8.93 

Legacy EmTool vs Enterprise CLM 22.21 30.61 < 1e-15 5.73 

Cloud EmTool vs Lightweight 41.92 29.19 < 1e-20 10.82 

Cloud EmTool vs Traditional monitoring 31.06 29.33 < 1e-20 8.02 

Cloud EmTool vs Enterprise CLM 18.96 30.30 < 1e-12 4.89 

Hypothesis H2 predicts that in cloud environments, a statistically significant fraction of certificates is discovered 

exclusively through load balancer configurations and cloud provider APIs, resulting in fewer omissions relative 

to monitoring-based approaches.  Results from the cloud scenario provide strong empirical support for this 

hypothesis. Under EmTool, the cloud-specific discovery contribution ( 𝛼𝐿𝐵 ) is consistently large across all 

infrastructure scales, with a mean value of 0.18 and low dispersion (SD = 0.03). Substantively, this implies that 

approximately 18% of certificates present in the infrastructure are identified exclusively through load balancer 

metadata and cloud API signals. These certificates are not attached to statically enumerated domains or explicitly 

configured monitoring targets and would therefore remain undiscovered under monitoring-centric architectures 

operating at the same level of human reliability. 

Two complementary statistical tests confirm both components of H2. First, a one-sample t-test evaluates whether 

the exclusive discovery share under EmTool differs from zero and shows an overwhelmingly significant effect (t 

= 32.86, df = 29, p < 10⁻²⁰), demonstrating that load balancer/API–only discovery is a systematic property of the 

architecture rather than a stochastic artifact of simulation noise. Second, a two-sample Welch t-test comparing 

EmTool to traditional monitoring architectures reveals that the exclusive discovery share is nearly an order of 

magnitude larger under EmTool (mean 𝛼𝐿𝐵= 0.18 versus 0.02; t = 27.71, df = 35.37, p < 10⁻²⁰), confirming that 

this capability is not replicated by configuration-driven monitoring approaches. 

Importantly, this exclusive discovery channel is directly associated with reduced omission counts at scale. At 

𝑁𝑡𝑟𝑢𝑒= 5000, EmTool omits approximately 40 certificates on average, whereas traditional monitoring omits 

roughly 950 certificates under identical infrastructure dynamics and human error assumptions. The magnitude of 

this difference closely corresponds to the number of certificates discovered exclusively via load balancer and 
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cloud API signals, indicating that this channel is not merely additive but is a primary mechanism driving 

EmTool’s superior performance. 

6. Conclusion  

The central technical contribution evaluated in this work is the use of Layer-7 load balancers and front-end routing 

configurations as the primary source of truth for TLS certificate discovery. Existing monitoring architectures, 

including enterprise CLM and machine identity platforms, derive their inventories from combinations of manually 

enumerated endpoints, environment-level scopes, periodic network scans, and certificate authority integrations. 

While effective within declared boundaries, these mechanisms remain structurally indirect: certificates are 

discovered only insofar as operators correctly specify where discovery should occur. As infrastructures grow and 

evolve, this assumption systematically breaks down. Layer-7 load balancers occupy a qualitatively different 

position. They explicitly encode which domains are reachable, which certificates are bound to those domains, and 

when bindings change. This information exists independently of naming conventions, deployment topology, or 

organizational ownership. By anchoring discovery at L7 termination points (as operationalized in EmTool) 

certificate inventories are derived directly from the infrastructure elements that actually govern encrypted traffic, 

rather than from administratively maintained abstractions. 

The empirical results demonstrate that this architectural shift fundamentally alters how omission risk scales. 

Across both legacy and cloud scenarios, monitoring-centered approaches exhibit sharply increasing numbers of 

missed certificates as infrastructure size grows, reflecting the accumulation of human configuration errors under 

frequent change. Enterprise CLM platforms attenuate this effect but remain sensitive to incomplete onboarding 

of discovery scopes and configuration drift across environments. In contrast, the load-balancer-centric discovery 

model maintains near-complete coverage even at large scale, because certificates enter the inventory precisely 

when they are attached to TLS-terminating components. The cloud scenario provides particularly strong evidence 

for the value of this approach. A substantial fraction of certificates is discovered exclusively through load balancer 

and cloud API data, objects that remain invisible to monitoring-based architectures operating under comparable 

conditions. These certificates are not edge cases: they correspond to dynamically created services, ephemeral 

environments, and automated routing changes that are characteristic of cloud-native systems. The sharp reduction 

in omission counts observed under the EmTool-style model aligns directly with the presence of this exclusive 

discovery channel. 

From a practical standpoint, the results have direct implications for both organizational risk management and 

national cybersecurity. TLS certificate failures remain a recurrent cause of large-scale service disruptions 

affecting financial systems, healthcare platforms, government services, and critical digital infrastructure. 

Importantly, a substantial share of these incidents originates not from renewal errors, but from certificates that 

were never incorporated into monitoring inventories and therefore expired or misconfigured without detection. 

As certificate lifetimes continue to shorten and cloud-native infrastructures expand, the attack surface created by 

“unknown certificates” grows, increasing the likelihood of cascading outages, loss of service availability, and 

exploitable trust failures at a national scale. 
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The findings of this study demonstrate that mitigating these risks requires architectural innovation rather than 

stricter procedures or increased human oversight. Discovery mechanisms anchored in Layer-7 load balancer state 

(where domain exposure and certificate bindings are authoritatively defined) systematically reduce blind spots 

that persist even in advanced enterprise certificate management systems. The alternative auto-discovery approach 

developed and evaluated in this research shows how such architectures can materially lower omission risk without 

increasing organizational burden. More broadly, the results suggest that the adoption of load-balancer-centric, 

event-driven certificate discovery should be treated as a strategic component of modern cybersecurity policy and 

infrastructure design, particularly for organizations operating services whose reliability is critical to national 

economic stability and public trust. 
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