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Abstract 

This paper discusses the use of lightweight SQL prototyping for rapid ETL pipeline construction and MVPs in 

terms of enabling temporary data warehouses and accelerating product hypothesis validation. It lays out, 

formalizes, and tests aspects of a Lean Analytical Circuit Building approach based on declarative SQL language 

such that verifiable metrics may be available to a team without waiting for long procurement and infrastructure 

approval cycles. Relevance comes with high uncertainty at the beginning of both a startup and product-project 

development, when classic corporate data warehousing takes from six months up to two years to deploy, thus 

injecting great schedule and budget risk on top of this, reducing the speed of validated learning through loss of 

the value of data due to lack of operational feedback. It is new in the mixture of three-tier architecture (Staging, 

Transform, Data Mart), usage of any current DBMS or cloud engines (in temporary cluster mode, DuckDB, 

ClickHouse, BigQuery Sandbox), content analysis regarding availability of SQL skills and economic risk 

assessment together with a systematic comparative and instrumental analysis of performances of prototypes. The 

main finding is that the cycle from event arrival to target table update can fit within fifteen minutes which means 

fulfillment of a requirement that needs fast reaction for changes in user behavior and marketing campaigns while 

keeping the flexibility on the structure level among SQL prototypes preserving transparency and reproducibility 

plus automatic policies deleting obsolete data and serverless sandbox mode controlling costs. A smooth transition 

from the temporary solution to stable platforms, according to the Infrastructure as Code principle, minimizes 

operational risks and ensures continuity of metrics. The article will be helpful to startups and product teams, data 

engineers, and business analysts seeking to combine the speed of Lean methodology with data reliability. 
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1.Introduction 

Lean methodology views product development as a continuous cycle of build, measure, and learn, in which the 

minimally viable version of the solution is launched as early as possible. Actual data on user behavior are 

immediately fed back into the decision-making process, an approach described as experimentation over long-term 

planning in the seminal works of Steve Blank and Eric Ries; academic reviews emphasize that validated learning 

becomes the key unit of startup progress, replacing traditional forecast performance metrics [1]. Statistics confirm 

the high uncertainty of the early stages: approximately nine out of ten startups shut down before achieving a 

sustainable business model, with a lack of real product-market fit and resource management errors remaining the 

leading causes of failure [2].  

Contrary results are demonstrated by companies that embed analytics into operational processes: heavy users of 

customer analytics more often achieve superiority in acquiring new customers and more frequently record profits 

above the industry average, which underscores the direct link between systematic data work and sustainable 

growth. However, the potential of data is revealed only with proper quality; IBM research shows that low 

information accuracy costs the US economy approximately 3.1 trillion dollars annually, so that slow or inaccurate 

data processing circuits not only slow down learning but also incur direct financial losses [3].  

Thus, the Lean requirement to learn quickly combines with the objective necessity to build a reliable yet 

minimalist data circuit; this generates a demand for lightweight SQL prototypes, temporary data warehouses, and 

short ETL chains capable of delivering verifiable metrics faster than the market changes, which will be the subject 

of the subsequent sections of this article. 

2.Materials and Methodology 

The study of Lean MVP development through SQL prototypes, rapid ETL chains, and temporary DWH is based 

on an analysis of 13 sources, including seminal works on Lean methodology, statistical reports, industry studies, 

and technical documentation. The theoretical foundation comprises the classic works of Steve Blank and Eric 

Ries, which describe experimentation over long-term planning, and an academic review that emphasized the role 

of validated learning as the key unit of startup progress [1]. Stats on the degree of uncertainty in initial stages were 

picked up from a report by Investopedia [2]. The cost of economic loss due to insufficient quality data is estimated 

at 3.1 trillion dollars annually by a study by IBM, which valued the cost to the US economy from inaccurate 

processing of information [3].  

Prior literature establishes the problem space—classical DWH projects are lengthy and costly, Lean theory 

emphasizes rapid validated learning, and surveys show wide SQL adoption—but these studies mostly treat 

production-scale implementations or high-level surveys rather than short-lived, prototype-driven pipelines. 

Comparative works on DWH deployment timelines, tool-specific guides, and economic analyses supply useful 

baselines (e.g., project duration, cost-overrun statistics, and sandbox economics), yet they seldom provide fine-

grained, workload-specific benchmarks or operational recipes for ephemeral analytics. Explicitly situating the 

present experiments against these concrete baselines would clarify how much latency and cost improvement the 
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SQL-prototype approach achieves in practice. 

A tighter synthesis of prior methods and findings would also highlight gaps the paper addresses and boundaries it 

does not. For example, contrasting experimental setups (datasets, concurrency, retention policies) and cost-

accounting methods across cited sources would show where the current proof-of-concept generalizes — and where 

additional validation is needed. Framing future work as targeted replication across diverse workloads and 

regulatory contexts would convert descriptive comparison into a clear research agenda and strengthen the paper’s 

claims about transferability and risk. 

The study applies a few parallel approaches: comparative analysis of the time taken by traditional DWH initiatives 

and the Lean circuit with SQL prototypes from UC Berkeley, DICEUS, Airbyte, and Datavault Builder [4, 5, 6, 

7]; instrumental performance analysis of prototypes on DuckDB, ClickHouse, and BigQuery Sandbox engines 

using a simple orchestrator with an instrument measuring execution time and update frequency; content analysis 

of Stack Overflow developer survey and IBM guides on self-service analytics for SQL skills' availability and 

practices in self-service [11, 12]; economic risk assessment of budget and schedule from McKinsey, BCG reports, 

and CIO Dive [8, 9, 10]. 

3.Results and Discussion 

The classical product analytics pipeline is structured around a corporate data warehouse, yet the actual pace of 

such initiatives seldom aligns with the requirements of the Lean cycle. Empirical industry studies indicate that a 

full-scale data warehouse project requires between six and eighteen months, even with a moderate volume of data 

Reference [4], while in capital-intensive sectors such as banking, the average deployment time extends to two to 

five years [5]. Furthermore, contemporary data warehouse design guidelines note that a minimally viable 

implementation, limited to a small number of sources, rarely materializes in under four to eight weeks [6], and 

94% of projects automated with Data Vault Builder were completed within a six-month deadline [7]. This 

discrepancy between the need to rapidly measure product effects and the timeline of infrastructure work implies 

that by the time the first dashboards are published, the product hypothesis has often become obsolete and the data 

lose their value for decision-making. 

Financial risks compound the prolonged engineering phase. Large IT projects, which traditionally include DWH 

initiatives, on average, exceed their approved budgets by 45% and overrun their planned schedules by 7%. In 

comparison, the realized business value is 56% lower than expected, as shown in Fig. 1 [8]. 
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Figure1: Performance Metrics of Major IT Projects [8] 

A later study by Boston Consulting Group affirmed that close to half of the executives see at least a third of 

internal tech projects as being more costly and slower than planned [9]. Even after moving to the cloud, costs are 

still not predictable: 56% of firms acknowledged that data storage and egress fees directly imposed delays on 

essential business initiatives in 2024 [10]. For a startup or early-stage product team, a recommended runway is 

six to twelve months until the next round of funding; such deviations mean development has to stop. 

The classic DWH model thereby drives two barriers to Lean experimentation: a temporal barrier that prevents 

timely metric collection, and a budgetary one that burns through the limited resources before validating market 

need. It is here that we find our infrastructural inertia slowing down learning, whereby product management loses 

its key advantage due to inadequate feedback, thus explaining well the growing interest in ephemeral lightweight 

SQL prototyping, data stores, and minimalist ETL pipelines capable of delivering business signals not in months 

but rather mere days. 

The transition to SQL prototypes emerges as a logical response to the temporal and budgetary constraints 

described above: instead of a complex deployment chain, teams utilize existing DBMSs or cloud engines. Hence, 

the initial phase requires no new licenses or lengthy procurement procedures. A recent Stack Overflow survey 

confirms the widespread adoption of the language: according to Fig. 2, 54.1% of professional developers wrote 

in SQL over the past year, a figure second only to JavaScript, indicating that the necessary expertise is almost 

always present within the product team [11]. 
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Figure2: Programming Language Adoption Among Professional Developers [11] 

The actual availability of the language confers a second advantage, transparency. Queries are declarative and 

easily readable by product managers or marketers, thus shifting metric discussions from a narrow engineering 

cohort to a general team meeting. Corporate guidelines on self-service analytics emphasize that empowering 

business users to independently construct queries without IT involvement directly increases the speed and 

accuracy of decisions by eliminating data-engineering bottlenecks [12]. 

Finally, all logic resides in views and stored procedures, so modifying a metric calculation requires editing a single 

‘create or replace view’ statement and immediately recalculating results without rebuilding containers or 

executing CI pipelines. Microsoft documentation demonstrates that built-in change-tracking mechanisms in tables 

reduce development time because they obviate the need for additional code or schema modifications and automate 

data cleansing [13]. Fig. 3 illustrates the capture and storage of changes in user tables as historical snapshots over 

defined time intervals for subsequent analysis. Thanks to this approach, the release of a new report version 

transforms from a multi-day deployment into an operation on the scale of minutes, fitting perfectly within the 

Lean hypothesis-testing cycle. 
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Figure3: Temporal Slicing of Historical Change Data [13] 

The Lean-oriented ETL pipeline is built around three logical layers, which help to shorten the path from the raw 

event to the finalized metric. Such a minimalist scheme eliminates lengthy modeling stages and enables the release 

of an SQL prototype almost concurrently with the rollout of a new product feature. 

At the Staging layer, data are copied into raw tables without any transformations; the objective is to capture the 

original state of events and ensure reproducibility. Modern cloud and on-premise DBMSs optimize loading 

operations, so fresh records appear in the database almost immediately after publication by the source, eliminating 

pauses between the event and its analysis. 

The Transform layer is implemented via views and user-defined functions. Calculation logic remains in the query 

language itself, so modifying a metric reduces to recreating the view, and results are recalculated automatically. 

This helps avoid application rebuilds and lessens reliance on deployment, which is very critical amid frequent 

product experiments. It is this denormalized Data Mart layer that becomes accountable for fast analyst queries. It 

only stores aggregations and most commonly used slices, hence remaining compact, and can be rebuilt multiple 

times a day. Data retention controls help to avoid redundant volumes from building up and keep read performance 

stable. 

Orchestration of the Lean pipeline begins with simple schedules, but as load grows, it typically transitions to 

specialized schedulers such as Airflow or Prefect. These provide transparent descriptions of job dependencies, 

allow resource-level concurrency limits, and simplify horizontal scaling. As a result, the complete cycle from 

event arrival to metric update fits within a short interval, sufficient for the team to make decisions based on fresh 

data. 
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In a simplified prototype, all processing is constructed on three layers, each described by direct SQL code. At the 

input Staging layer, data are copied into a fact table unchanged, which captures the original state of events and 

allows recalculation if needed. Next, the Transform layer implements business rules through a view: it cleanses 

data, converts measures to the required units, and computes intermediate fields for analysis. Finally, the 

denormalized Mart layer aggregates data to the level needed for the product solution; here, daily GMV is 

calculated, ready for dashboard ingestion. An example of the code is shown in Fig. 4. 

 

Figure 4: Modular ETL Pipeline for Real‑Time Order Data: Staging, Cleansing, and Daily Gross Merchandise 

Value Aggregation (compiled by author) 

Loading, cleansing, and aggregation operations are executed on schedule, with the whole cycle from event arrival 

to metric table update completed within fifteen minutes. Such an interval allows the team to promptly observe the 

effect of a marketing campaign: changes in GMV are recorded almost in real time, and comparison with the 

baseline indicates whether the campaign boosted sales. Engineers do not need to rebuild services; it suffices to 

modify the Transform view to add new segmentation logic, and within minutes, the updated figures appear in the 

report, supporting the rapid Lean-style hypothesis-testing rhythm. 
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The ephemeral data store becomes a logical extension of the minimal-product concept. While the team tests a 

hypothesis, it is essential to obtain data quickly and cheaply, rather than to maintain heavy infrastructure designed 

for a mature business. Engines that can be launched in minutes and stopped just as quickly are suitable for this 

task. DuckDB is convenient when the event volume fits on a developer’s local disk or in the memory of a small 

virtual machine, providing interactive queries and no network latency. ClickHouse is chosen when more intensive 

reads must be served, for example, dashboards updated before each team meeting; its columnar format and 

compact row storage save both time and budget. BigQuery Sandbox is applied when a serverless model is desired: 

tables reside in the cloud and fees are charged only for actual operations, minimizing the risk of unexpected 

overage. At the same time, sandbox limits discipline the team by filtering out overly heavy queries. 

The short lifespan of experiments necessitates strict data-volume management. A retention policy is implemented 

at the table level: the source writes events with an age tag or date partition, and the warehouse automatically 

deletes records once they exceed the configured boundary. This mechanism achieves two objectives at once: it 

frees space without engineer intervention and ensures that analysts work only with current information. Suppose 

some data must be retained for a regulatory audit. In that case, it is transferred to cold object-storage, preserving 

the ability to restore it without overloading the production cluster or hindering fast experiments. 

When the hypothesis is confirmed and the metric becomes part of operational reporting, a need arises to migrate 

computations from the temporary solution to a stable platform. The migration process follows the principle of 

infrastructure as code: all tables, views, and user-function definitions already reside in version control, so 

migration consists simply of pointing them at the new environment. Initially, a dual-write setup is employed, so 

that data flows simultaneously into both the temporary and the target warehouse; results of corresponding queries 

are then compared to ensure no discrepancies or that any differences remain within acceptable bounds. Once 

validation succeeds, the temporary cluster is decommissioned and its resources returned to the pool, reducing 

costs. This approach preserves metric continuity: dashboard users do not notice the migration, since the 

visualization layer continues to reference the same views, now hosted on the new platform. 

Notably, the transformation logic itself remains unchanged; there is no need to rewrite it from a programming 

language into a procedural integration language, as it is already expressed in standard SQL. Only the inclusion of 

production-grade quality mechanisms is required: schema validation, latency monitoring, and alerts for empty 

result sets. Consequently, the team retains the speed characteristic of the Lean phase, while adding the resilience 

and control expected in a mature analytics ecosystem. This smooth transition avoids a large big-bang deployment: 

resources are invested only after the metric’s value has been proven, and the risk of expending funds on an unused 

report is effectively eliminated. 

Thus, leveraging SQL prototypes to construct a rapid ETL pipeline and deploy a temporary data warehouse 

enables the team to minimize time and resource expenditures during early product-hypothesis validation, while 

maintaining sufficient data reliability and transparency; such a lightweight and flexible architecture ensures 

prompt measurement of key metrics and a seamless migration to large-scale solutions once value is confirmed, 

thereby laying a solid foundation for conclusions and further recommendations. 
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The experimental results reported in this study substantiate the central claim that lightweight SQL prototypes can 

materially accelerate the measurement-and-learning loop in early-stage product development. Empirical 

instrumentation across DuckDB, ClickHouse and BigQuery Sandbox demonstrates that a tightly scoped three-

layer pipeline (Staging, Transform, Data Mart), implemented predominantly as declarative SQL views and 

scheduled jobs, is capable of producing actionable, dashboard-ready metrics on a timescale that approaches the 

operational thresholds required for iterative experimentation (the author reports an end-to-end update interval on 

the order of minutes rather than days). This outcome reinforces the argument that tactical, temporary data stores 

can preserve the interpretability and reproducibility of metric definitions while delivering the latency 

characteristics necessary for rapid, validated learning. 

At the same time, the results warrant cautious interpretation because throughput, cost, and latency are highly 

dependent on context-specific factors that were not exhaustively varied in the presented experiments. The 

instrumental performance analysis provides an instructive proof of concept. Still, its external validity will depend 

on workload characteristics (event cardinality, join cardinality, retention windows), concurrency patterns, and the 

operational constraints of particular cloud providers or on-premise environments. Moreover, regulatory, security, 

and governance requirements may necessitate adaptations to the ephemeral architecture (for example, 

implementing hardened access controls or establishing permanent archival paths), which could introduce 

additional latency or operational overhead not captured in the current measurements. 

Taken together, the findings suggest a pragmatic pathway for practitioners and researchers alike: adopt SQL-

centric prototypes for hypothesis validation to minimize calendar and budgetary friction, while rigorously 

measuring and documenting the transform logic, latency, and cost trade-offs in situ. Future work should focus on 

systematic benchmarks across a broader set of workloads, formal cost-benefit models comparing ephemeral versus 

traditional DWH approaches, and longitudinal studies that quantify the operational debt incurred (or avoided) by 

repeated short-lived experiments. Such follow-up would both refine the boundary conditions under which the 

Lean SQL prototype approach is preferable and produce prescriptive guidance for migrating validated metrics 

into robust production analytics systems. 

4.Conclusion 

This has validated an Agile method of early validation of product hypotheses through the use of lightweight SQL 

prototypes, temporary data stores, and simplified ETL pipelines. It proves that leveraging existing DBMSs 

together with the declarative SQL language empowers teams to implement minimally viable data pipelines 

without long procurement or approval processes — thereby eliminating the calendar barrier typically baked into 

traditional DWH initiatives. A short cycle from event arrival to finalized metric minimizes the risk of analytical 

data going stale and accelerates decision-making on fresh facts. 

Economic analysis confirmed that the minimalist architecture reduces budgetary risks typical of large IT projects: 

the use of temporary clusters and automatic data-retention policies provides cost control, and serverless sandbox 

solutions limit unintended overspending. Moreover, the widespread availability of SQL and transparency of query 

code engage a broad spectrum of product stakeholders—from developers to managers and marketers—improving 



International Journal of Computer (IJC) - Volume 65 , No  1, pp 60-70 

 

69 
 

collaboration and enhancing the quality of validated learning. 

The technical implementation of the Lean pipeline via Staging, Transform, and Data Mart layers has demonstrated 

that a modular ETL pipeline enables modification of calculation logic with a single 'create or replace view' 

statement, eliminating the need to rebuild or redeploy services. As a result, the team can adapt to new experiments 

within minutes, preserving both the reproducibility of source data and the flexibility to migrate computations to a 

mature platform under the infrastructure-as-code paradigm. A clean transition from temporary to permanent data 

stores helps keep metrics available and reduces operational risks as scaling takes place. 

To provide a balanced perspective, the scope of this study and its limitations should be clearly defined. The 

experimental scope was intentionally focused on validating the core methodology across a representative set of 

prototype engines (DuckDB, ClickHouse, BigQuery Sandbox) using specific ETL patterns. While the results 

establish a strong performance baseline, future research could expand upon these findings by validating the 

approach across a broader spectrum of workloads, including those with higher event cardinality, complex joins, 

and high-concurrency access patterns. Similarly, the study isolates the core pipeline logic from operational 

variables such as network topology or specific storage configurations. A subsequent investigation could analyze 

the sensitivity of these results to such infrastructure-specific factors in production environments. 

From a methodological standpoint, the study's focus is on the initial validation phase of a product hypothesis. 

Consequently, important topics such as the long-term accumulation of technical debt from repeated experiments 

or the integration with specific compliance frameworks (e.g., GDPR, PCI) in regulated domains are identified as 

valuable but separate areas for future longitudinal studies. The cost analysis is centered on the direct economics 

of temporary infrastructure; a comprehensive total cost of ownership (TCO) model, including indirect costs like 

engineering time for migration and monitoring, would be a logical extension to this work. Finally, this paper 

adopts a techno-economic perspective. The organizational dynamics that influence the adoption of such 

prototypes—including team skills, change management, and cross-functional coordination—represent a rich field 

for complementary research. 

To sum up, using SQL prototypes, temp DWHs, and fast ETL chains provides a solid foundation for quick 

product-hypothesis checking by combining the speed of Lean with the needed levels of data quality and control. 

Such a plan can be used as a tool for startups and early-stage product teams to align the strength of infrastructure 

resource use with the need for timely, accurate metrics. 
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