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Abstract 

The paper provides a broad overview and classification of machine learning methods used to optimize routing in 

distributed streaming architectures. The aim of the study is to provide a detailed analysis of existing approaches: 

from classical reinforcement learning algorithms to modern deep neural networks, with an assessment of their 

potential in various operational scenarios and identification of key limitations. The methodological basis was a 

systematic review of publications dealing with intelligent routing, real-time data processing, and integration of 

ML solutions into system pipelines. Three main classes of algorithms were identified and considered: 

reinforcement learning methods (including DQN and actor-critic), deep networks (CNN, RNN and their hybrids), 

as well as ensemble and evolutionary techniques. The advantages and disadvantages of each class are analyzed in 

terms of key criteria — response time to flow changes, scalability in the number of nodes, and the ability to 

dynamically adapt. Special attention was paid to hybrid strategies that combine several models to increase the 

reliability and accuracy of recommendations on event transmission routes. In conclusion, the main conclusions 

about the current state of research are formulated and promising areas are outlined: the development of more 

robust architectures with explicable decision-making logic, as well as the integration of graph neural networks for 

modeling complex topologies of distributed systems. The presented results will be useful for engineers developing 

streaming platforms, big data analysis specialists, and research groups working on information channel 

optimization tasks. 
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1. Introduction 

Streaming platforms designed to continuously process event data are becoming important for areas such as the 

Internet of Things, algorithmic trading, and social media monitoring. The efficiency of such systems is measured 

by the speed and accuracy of delivery of each incoming event to the corresponding computing component or 

service [1]. Classical routing methods based on given rules or elementary heuristics are often unable to respond 

to rapidly changing loads and network conditions: this leads to local overloads, increased response times, and 

deterioration in overall system throughput. In this context, the use of machine learning methods for routing tasks 

opens up broad prospects: adaptive, self-learning algorithms can not only predict optimal routes for events based 

on their features, but also take into account the current state of nodes and communication channels. At the same 

time, the scientific community still lacks a unified methodology for systematically evaluating and comparatively 

analyzing various ML approaches in relation to heterogeneous and highly loaded streaming environments. 

Complex models that combine predictive analytics of event characteristics with monitoring of infrastructure 

resources are not sufficiently developed. 

The aim of the study is to conduct a broad review of modern methods of using machine learning for routing in 

streaming systems, identify and classify their strengths and weaknesses, and determine the most promising areas 

for development. 

The scientific novelty lies in the formulation of a conceptual basis for the selection and integration of ML routing 

algorithms focused on the balance between processing speed, delivery accuracy and adaptability to load dynamics 

and data structure. 

The author's hypothesis is that hybrid models combining reinforcement learning mechanisms for strategic flow 

management and supervised learning methods for predictive event classification can provide superiority in routing 

efficiency compared to individual ML algorithms. 

However, the study is not without limitations, as the work focuses on algorithmic paradigms, without delving into 

the analysis of overhead costs for hardware implementation and power consumption, which are important factors 

for practical deployment. 

2. Materials and methods 

Contemporary research on the application of machine learning techniques to event routing in streaming systems 

falls into several thematic areas. One area explores the use of deep reinforcement learning to optimize routes 

within Software-Defined Networking (SDN). For example, Casas-Velasco, Rendon and da Fonseca [6] proposed 

the DRSIR architecture, in which a deep Q-learning agent dynamically selects the path for each flow based on the 

network’s current state, demonstrating reduced latency and packet loss compared with traditional algorithms. 

Subsequent surveys by Amin R., Rahmani M. K., Zarei S., Ahmad I.  [7] and by Zhang K., Wang Z., Zhang D., 

Zhang Q., Song H., Li J. [2] have consolidated existing machine learning approaches for routing optimization, 

identifying decision trees, ensemble methods and neural networks as key algorithm classes and showing that 

hybrid solutions incorporating network metrics yield the best performance. 
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Other studies have applied supervised learning for service-aware or quality-of-service (QoS)-driven routing. 

Zheng W., Wang L., Zhang Q., Zhou J.,  Wang L.  [9] developed an application-aware QoS routing method that 

uses gradient boosting to classify flows and then determine priority paths, thereby ensuring required service 

parameters for multimedia applications. Alhaidari F., Alghamdi A., Alzahrani B.,  Alohali A. [10] introduced a 

Deep Extreme Learning Machine (Deep ELM) algorithm, combining the fast training of ELM with deep 

architectures to achieve high throughput at low computational cost. More recently, Aswini C.,  Valarmathi M. L. 

Reference [12] proposed an AI-driven “smart” routing framework in SDN that first applies statistical-feature-

based pre-filtering and then uses a convolutional neural network to adaptively select routes.  

The presented works demonstrate a fundamental philosophical rift in approaches to intelligent routing. On the one 

hand, DRL methods described in study [6] offer dynamic but reactive adaptation, which often simplifies the 

network state to a feature vector, ignoring its complex topology. On the other hand, supervised learning methods 

presented in works [9, 10] are proactive but static; their effectiveness depends entirely on historical data, rendering 

them incapable of coping with unforeseen scenarios. This inherent conflict between flexibility and predictability 

explains why researchers intuitively turn to hybrid schemes [12]. Thus it can be observed that there is no principled 

foundation for unifying these two opposing paradigms into a single synergistic model. 

The second direction combines hybrid methods of intelligent forwarding and distributed control in IoT and edge 

systems. Wu J., Li J., Zhang Y., Chen B., Zhao Y. [8] applied deep reinforcement learning to task scheduling in 

industrial IoT based on edge computing, where the DQN agent selects optimal event processing sequences under 

resource constraints, which reduced the average response time of nodes. The approach of Ryu S., Joe I., Kim W. 

T. [11] for forwarding strategies in Named Data Networking combines Q-learning with an LSTM model that can 

predict future route loads, thereby improving the overall network throughput. Yuan Y., Mahmood A. R. [1] and 

Prodhan F. A., Haque M. A., Rahman A., Zia T. A. [5] investigate the features of using artificial intelligence in 

event routing in streaming systems, and also demonstrate how the A3C/IMPALA algorithms are used to work 

with partially observable data state.  

This block demonstrates an important trend: the shift from abstract network optimization to solving applied 

problems in resource-constrained environments (IoT, Edge, NDN). The research [8, 11] shows that to be 

successful, standard algorithms must be adapted or hybridized to account for domain specifics, such as resource 

limitations or the need for forecasting. The mention of asynchronous methods [1, 5] for handling partial 

observability highlights a move towards greater realism. However, this leads to another issue: the resulting 

solutions become highly specialized and brittle, making them difficult to transfer from one domain to another. 

Thus, while these works solve specific problems, they do so at the cost of generality, and the literature still lacks 

a universal framework for distributed intelligent control. 

The third group includes review articles and meta-analyses that systematize achievements in related areas. Ding 

Q., Jin Y., Huang Y., Zeng D., Guo S. [3] conducted a review of energy-efficient routing algorithms in wireless 

sensor networks (WSNs), highlighting classification and regression methods for predicting node loads and 

adaptive path change strategies to extend network lifetime. The review by Rehman Z., Salah K., Damiani E., 

Jayaraman R. [4] covers the interaction of machine learning methods and IoT in enterprise architectures, 
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discussing the challenges of routing, flow control and security, and also pointing out the main challenges – 

scalability, data privacy and the need for online learning. 

These reviews serve a critical function by expanding the problem space beyond mere performance metrics. They 

inject a necessary dose of pragmatism, emphasizing that real-world systems involve trade-offs between speed, 

energy efficiency [3], security, and scalability [4]. This allows for the argument that a one-dimensional 

optimization of latency is an academic simplification. The key weakness that these reviews reveal (albeit 

implicitly) is the gap between recognizing the multi-objective nature of the problem and having the algorithmic 

tools to solve it. They are excellent at diagnosing the complexity but do not offer a comprehensive cure, thereby 

highlighting the need for more advanced models capable of balancing multiple conflicting goals simultaneously. 

The fourth group represents works directly aimed at streaming algorithms for big data processing, which is 

important for building flexible event routing systems. Marpu R., Manjula B. [13] discuss a set of streaming 

algorithms (online SVM, Hoeffding Tree, ADWIN) and their integration with platforms such as Apache Flink and 

Spark Streaming for distributed processing and routing of events in real time, emphasizing the need to handle 

conceptual drift and load balancing. Wilson A., Anwar M. R. [14] focus on hybrid schemes with subsequent event 

routing through classifiers that are able to adjust their structure over time and ensure high accuracy with changing 

statistics of the input stream.  This block rightly points to the central challenge of streaming systems: continuous 

change. The works [13, 14] correctly identify adaptation and handling "concept drift" as key tasks.  

However, despite the wide range of proposed methods, there are noticeable contradictions and gaps in the 

literature. Firstly, the choice of evaluation metrics varies: some works focus on latency and throughput, others - 

on energy efficiency or tolerance to drift, which complicates a direct comparison of approaches. Second, most 

publications lack experimental studies on real or large-scale test networks, which limits the generalizability of the 

results. Finally, insufficient attention is paid to the problems of adaptive routing under conceptual drift and 

changing topology, although they are important for modern flow systems. 

3. Results and discussions 

The incorporation of machine learning methods into event stream routing mechanisms provides a qualitatively 

new level of throughput, adaptability and overall efficiency of systems. Modern research is actively developing 

the use of such ML paradigms as reinforcement learning (RL), deep learning (DL) and their hybrid solutions, 

united under the name Deep Reinforcement Learning (DRL). RL approaches are based on the formalism of 

Markov decision processes (MDP), where an agent, analyzing the current state of the system and receiving reward 

or penalty signals - for example, based on processing delays or node load levels - gradually develops an optimal 

routing strategy [1, 2, 11]. Such a mechanism allows abandoning given rules and independently adapting to load 

dynamics and changing operating conditions. 

Deep neural networks used in DRL are a tool for approximating value functions and policies, which is especially 

important in the multidimensionality of states and the richness of operational actions inherent in distributed 

streaming platforms with heterogeneous event sources and transmission routes [6, 7, 8]. In applied IoT data 
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processing scenarios, this is expressed in the ability of ML models to distribute flows from sensors between 

analytical services in real time, taking into account the type of information transmitted, latency requirements and 

current capabilities of computing resources, thereby ensuring a balance between response speed and processing 

reliability [4]. Figure 1 shows a generalized architecture of an ML-directed event routing system, including 

telemetry collection, training and inference modules, as well as monitoring and dynamic resource balancing 

components. 

 

Figure 1: Generalized architecture of an event routing system based on machine learning [6, 8, 13] 

The proposed multi-level architecture assumes that each new incoming event is first subjected to a comprehensive 

analysis in a specialized feature extraction module. This module extracts a set of informative attributes from the 

raw data, which are then used by the ML algorithm to reasonably select the most suitable processor. In parallel, 

the monitoring system collects data on the infrastructure status (e.g., the load on computing nodes, the length of 

processing queues, input/output delays, and other metrics), providing the ML model with the necessary feedback 

to adjust the routing strategy. Moreover, the model itself can be periodically or online trained on new incoming 
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data and signals about the quality of previously made decisions (the so-called sequence modeling), which ensures 

a constant increase in the accuracy and resilience of the system to changing operating conditions. One of the 

fundamental advantages of using machine learning methods in event routing is their predictive potential. By 

analyzing a wealth of historical data together with the actual features of each event, supervised learning models 

— whether decision tree-based algorithms, gradient boosting, or deep neural networks — are able to predict in 

advance the most efficient route or the optimal handler class for each input [9]. This approach is especially 

valuable in high-load systems, where early classification and assignment of events can significantly reduce latency 

and increase throughput. Figure 2 schematically illustrates the decision-making architecture of an ML agent using 

reinforcement learning methods, where the agent, based on the current state of the system and accumulated 

experience, selects actions that maximize long-term service quality metrics. 

 

Figure 2: Reinforcement learning cycle diagram for the routing agent [1, 11] 

A reinforcement learning (RL) agent is considered as an autonomous decision-making process in a dynamic 

environment: at time t, it records the current state of the system Sₜ (e.g., incoming traffic metrics, the load of 

individual processors, or network infrastructure parameters), then, based on this information, selects an action Aₜ 

(e.g., forwarding an event to a specific processing node). After completing the selected step, the environment 

provides the agent with an updated state Sₜ₊₁ and a reward signal Rₜ₊₁, which quantitatively evaluates the 

effectiveness of the action taken. The agent's task is to maximize the total (cumulative) reward, which formally 

boils down to optimizing the return function [10]. It is through the approximation of optimal value functions using 

tabular or function-oriented methods that a balance between exploration and exploitation is achieved and the 
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adaptability of the solution to a changing flow of events is ensured. Comparing the performance of different 

machine learning algorithms in event routing is a highly complex task, since the overall efficiency of a particular 

method is determined by many parameters: the characteristics of the data flow itself (speed, variability, presence 

of distribution "drift"), architectural features of the computing platform (distribution of nodes, channel throughput, 

latency), requirements for target metrics (maximization of throughput, minimization of response time, resilience 

to failures) and the costs of training or retraining the model. In addition, the evaluation methodology plays a 

significant role - the uniformity of criteria, the volume and representativeness of test sets, as well as the methods 

of interpreting the results (for example, analysis of learning curve and convergence curve graphs, assessment of 

sensitivity to hyperparameters, resilience to "noisy" data). 

Table 1 compares several machine learning methods used for event routing, from classical statistical models and 

nearest neighbor algorithms to modern deep neural networks and event graph models. The dimensions used are 

training complexity, data volume requirements, sensitivity to flow changes, computational load during inference, 

and adaptability to system dynamics. 

Table 1: Comparison of machine learning approaches for event routing[3, 5, 9, 13, 14] 

Criterion Reinforcement 

learning (RL) 

Deep Learning (DL) 

(as part of DRL or 

as a classifier) 

Traditional ML 

(decision trees, SVM) 

Hybrid models 

Adaptability High Average (requires 

retraining to adapt) 

Low/Medium Very high 

Model Complexity Varies (from Q-tables 

to neural networks) 

High Low/Medium High 

Training data 

requirements 

Interaction with 

environment, reward 

function 

Large labeled 

datasets (for 

classification) or 

interaction 

experience (for 

DRL) 

Labeled datasets Heterogeneous 

data 

Interpretability Low (especially for 

DRL) 

Very Low Medium/High Low 

Computational Cost 

(Operation) 

Medium/High (for 

DRL) 

High Low/Medium High 

Handling new/unknown 

scenarios 

Good (exploring the 

environment) 

Moderate (depends 

on generalization 

ability) 

Weak Good 

Table 1 illuminates a fundamental trade-off between adaptability and interpretability. While RL-based models 

Reference [1, 11] demonstrate superior real-time adaptation, their 'black-box' decision-making process is often 
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unacceptable for mission-critical systems where explainability is paramount. Conversely, traditional ML models 

like decision trees [9] offer high interpretability but struggle with concept drift and dynamic environments. 

Hypothesis, therefore, posits that a hybrid approach can resolve this tension, wherein an interpretable model 

manages the bulk of routine events, while an RL agent is invoked to handle anomalies and novel scenarios, thus 

balancing efficiency with operational transparency. 

The empirical evidence strongly supports the potential of DRL. For instance, the DRSIR architecture proposed by 

Casas-Velasco D. M., Rendon O. M. C.,  da Fonseca N. L. S.[6] achieved reduction in average latency and 

decrease in packet loss compared to the OSPF protocol under simulated variable load conditions. Concurrently, 

the survey by Amin R., Rahmani M. K., Zarei S., & Ahmad I. [7] reveals that hybrid models, which combine DRL 

with decision trees for initial traffic classification, outperform 'pure' DRL agents by achieving higher throughput. 

This data directly supports our hypothesis regarding the synergistic effect of hybrid models, while also 

highlighting that the specific architecture of the DRL solution is a critical determinant of its ultimate performance. 

Despite the significant potential for implementing machine learning methods in routing problems, in practice we 

have to face a number of obstacles. Firstly, designing and debugging complex ML models requires a deep 

understanding of the specifics of the subject area and often turns into an iterative process of selecting architectures 

and hyperparameters. Secondly, to ensure high accuracy of forecasts, large and well-labeled samples are required, 

which is often difficult due to the limited availability of representative data. The third factor is computational 

costs: extracting informative features and promptly performing predictions in real time can overload both 

hardware and network resources. Finally, maintaining the reliability of models in the face of changing statistics 

of incoming flows (the so-called concept drift) remains one of the main problems in their long-term use [14]. 

As a way to overcome these difficulties, hybrid schemes are proposed that combine lightweight predictive 

algorithms with more resource-intensive reinforcement learning agents. In such systems, fast heuristic or gradient 

models are responsible for processing routine events, while RL agents take on adaptation to unexpected or 

abnormal situations, ensuring the flexibility and stability of the routing mechanism [5, 12]. Promising research 

areas include the development of “lightweight” versions of deep networks and RL algorithms with low 

computational complexity, as well as the creation of continuous or online learning methods capable of updating 

model parameters without serious performance degradation. Special attention should be paid to increasing the 

transparency of decisions made - this is a key condition for user trust and safe deployment of systems in critical 

applications. Thus, the analysis of the results emphasizes that approaches based on deep learning and 

reinforcement learning open up qualitatively new opportunities for routing optimization in streaming 

architectures. Their ability to learn on the fly and quickly respond to changes in workload distinguishes them from 

classical algorithms based on rigidly defined rules. However, significant challenges remain: high model 

complexity, significant data and computing requirements, and limited interpretability of solutions. 

4. Conclusion 

The study confirmed not only the relevance, but also the strategic importance of using machine learning methods 

to build routing in real-time event processing systems. The described model is based on the hybridization of 
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various classes of machine learning algorithms, which allows achieving a synergistic effect and increasing the 

system's resistance to changes in the characteristics of incoming flows. In the context of further research, it is 

recommended to focus on creating lightweight, but robust models that support continuous online learning and are 

able to automatically rebuild when event patterns change. In addition, an important area is to increase the 

transparency and explainability of decisions made by such models - this will pave the way for the widespread 

implementation of next-generation intelligent flow systems with a guaranteed level of trust and predictability of 

behavior. 
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