

150

International Journal of Computer (IJC)

ISSN 2307-4523 (Print & Online)

https://ijcjournal.org/index.php/InternationalJournalOfComputer/index

A Comprehensive Overview of Kernels in Machine

Learning: Mathematical Foundations and Applications

Omar El Khatib
a
*, Nabeel Alkhatib

b

a, b
Math. and Computer Science Dept., Loyola University New Orleans, New Orleans, 70118 USA

a
Email: oelkhat@loyno.edu

b
Email: nalkhati@my.loyno.edu

Abstract

Kernels play a fundamental role in machine learning, enabling algorithms to operate efficiently and effectively

in high-dimensional spaces. In this paper, we provide a comprehensive overview of regression kernels in

machine learning, focusing on their mathematical foundations, properties, and practical applications. We begin

with an introduction to the concept of regression kernels and their significance in machine learning. Then, we

delve into the mathematical formulation of regression kernels, exploring Mercer's theorem and positive semi-

definite (PSD) kernels. Next, we discuss popular kernel functions with their respective properties and

applications. After that we apply regression kernel to the bike sharing demand dataset as a case study and

compare the different kernel functions. Finally, we explore kernel limitations and current research trends and

emerging directions in kernel-based learning, offering insights into the future potential of this powerful

methodology. This work aims to serve as a resource for both researchers and practitioners seeking a thorough

understanding of regression kernel-based approaches in machine learning.

Keywords: Kernel Applications; Mathematical Foundations of Kernels; Kernel Trick; Kernel Properties.

1. Introduction

Machine learning (ML) is a branch of artificial intelligence (AI) that focuses on learning from data to make

predictions to unseen data. Traditionally, the theory and algorithms of machine learning and statistics have been

very well developed for the linear case. Linear classifiers work best when the dataset classes are linearly

separable [1]. However, real world data analysis problems often require nonlinear methods to detect the kind of

dependencies that allow successful prediction of target of interest. For nonlinear decision boundary, one

approach that allows us to still utilize linear classifiers is to apply a kernel [2].

--

Received: 10/2/2024
Accepted: 10/16/2024

Published: 12/26/2024

--

* Corresponding author.

mailto:oelkhat@loyno.edu

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

151

Kernels play a fundamental role in machine learning, enabling algorithms to operate efficiently and effectively

in high dimensional spaces. Kernels use the linear classifier to build non-linear decision boundaries by

transferring the input dataset into high dimension space [1, 2, 3].

In this paper, we provide a comprehensive overview of kernels in machine learning, focusing on their

mathematical foundations, properties, and practical applications. Section 2 review previous work and our study.

Then section 3 introduces the concept of regression kernels. Next, we delve into the mathematical formulation

of regression kernels in section 4. After that we explore Mercer's theorem and positive semi-definite (PSD)

kernels in section 5. Next, we discuss popular kernel functions such as linear, polynomial, Gaussian (RBF),

Laplacian and sigmoid kernels, along with their respective properties and applications in section 6. Then, we

discuss applications of kernels in section 7. After that we showed a practical application of using linear

regression kernels on the bike sharing demand dataset from Kaggle to find the minimum error and discuss the

limitation of regression kernels in section 8. Finally, we conclude with a discussion on current research trends

and future directions in kernel-based learning in section 9.

2. Previous Work

Mercer’s theorem [4] established the conditions under which a kernel function can be expressed as an inner

product in a high-dimensional space. This theorem is the foundation for kernel methods, ensuring that the kernel

matrix is positive semi-definite and valid for use in optimization problems. This work relies on Mercer’s

theorem to justify the use of kernels like the RBF, polynomial, and Laplacian kernels.

Support vector machines (SVMs) [5] are one of the earliest and most influential applications of kernel methods.

They use kernels to transform data into a high-dimensional space where a hyperplane can separate classes. This

work builds on the kernel trick introduced in SVMs but applies it to regression problems using Kernel Ridge

Regression (KRR).

Saunders and his colleagues [6] introduced KRR as a kernelized version of ridge regression. KRR has been

applied to various domains, including bioinformatics, finance, and environmental modeling. Example: In

bioinformatics, KRR has been used for protein structure prediction [7]. In this work applies KRR as a primary

method to a novel domain—bike sharing demand prediction—demonstrating its versatility.

The choice of kernel function (e.g., RBF, polynomial, Laplacian) significantly impacts model performance.

Schölkopf and Smola [8] discussed the properties of different kernels and their suitability for various tasks.

Genton [9] provided a theoretical analysis of kernel functions, including the Laplacian kernel. This work

compares multiple kernels and highlights the superior performance of the Laplacian kernel for bike sharing

demand prediction. The performance of kernel methods depends heavily on hyperparameters like gamma,

degree, and coef0.

Bergstra and Bengio [10] Introduced random search for hyperparameter optimization. Snoek and his colleagues

[11] applied Bayesian optimization to hyperparameter tuning in kernel methods. This work uses grid search and

cross-validation to tune hyperparameters, building on these methodologies.

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

152

In this paper, KRR is applied to the bike sharing demand dataset, a novel application that has not been

extensively studied using kernel methods. This contributes to the growing body of research on kernel methods in

urban planning and transportation. provide a detailed comparison of multiple kernels (linear, RBF, polynomial,

Laplacian) and identify the Laplacian kernel as the best-performing one for this dataset. This adds to the

literature on kernel selection by demonstrating the effectiveness of the Laplacian kernel in a real-world

regression task. This work highlights the importance of hyperparameter tuning (e.g., gamma, degree, coef0) in

achieving optimal performance with KRR. It also provides insights into the robustness of the Laplacian kernel to

outliers and its ability to capture localized patterns in the data.

3. Kernels

Let 𝐗 denote the original input features space. Using a feature map function 𝝓(𝐗) that maps the original input

features 𝐗 to a possibly higher dimensional space 𝝓(𝐗), such that data in this higher dimensional space become

linearly separable. That function 𝝓 is a non-linear transformation. After that, use the linear classifier (SVM,

logistic regression, linear regression, etc.) to the high dimension transformed feature vector 𝝓(𝐗) to construct a

non-linear classifier in the original input features 𝐗. For example, assume the following dataset presented in

Figure 1a, applying kernel function transformation as in Figure 1b, the data becomes linearly separable, and we

can apply linear classifier.

4. Mathematical foundation of Kernels

In this section, we delve into the mathematical formulation of kernels ridge regression (KRR), exploring

Mercer's theorem and positive semi-definite (PSD) kernels.

4.1. Definitions

Let 𝐑 be the set of real numbers. Given a dataset 𝑫 = {(𝒙𝒊, 𝒚𝒊)}𝒊=𝟏
𝒏 , 𝒙𝒊 ∈ 𝑹𝒅 called the input features of d-

dimension, 𝒚𝒊 ∈ 𝑹 is called the target. Apply a transformation 𝝓 to every input feature 𝒙𝒊, i.e. 𝝓: 𝒙𝒊 → 𝝓(𝒙𝒊),

𝜙: 𝒙 → 𝜙(𝒙)

(a) Original dataset (b) dataset after applying kernel

function transformation

Figure 1: Shows the effect of kernels function transformation on the dataset.

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

153

where 𝝓(𝒙𝒊) ∈ 𝑹𝒒 , usually 𝒒 ≫ 𝒅 because dimensions are added by 𝝓 to capture the non-linear interaction

among the original features. This new representation, 𝝓(𝒙𝒊), is very expressive and allows for complicated non-

linear decision boundaries - but the dimensionality is extremely high. This makes our algorithm unbearably (and

quickly prohibitively) slow [12].

For example, Assume: 𝒙𝒊
𝑻 = (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … , 𝒙𝒅) , and define the kernel transformation that generate all

polynomial terms 𝝓(𝒙𝒊)
𝑻 = (𝟏, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒅, 𝒙𝟏𝒙𝟐, … 𝒙𝒅−𝟏𝒙𝒅, 𝒙𝟏𝒙𝟐𝒙𝟑, … , 𝒙𝟏𝒙𝟐𝒙𝟑 … 𝒙𝒅), the dimension of 𝒙𝒊 is

𝒅 × 𝟏, but the dimension of 𝝓(𝒙𝒊) is 𝟐𝒅 × 𝟏.

The advantage of kernel function is simple transformation, and the problem stays convex and well behaved, (i.e.

you can still use the original gradient descent code, just with very high dimensional representation).

Disadvantage: 𝜙(𝑥𝑖) might be very high dimensional.

4.2 Kernel trick

The kernel trick is a way to avoid the computation in high dimension space generated by 𝜙(𝑥𝑖) and overcome

the slow algorithm of computing it. It also avoids computing the weights parameter 𝑤 in the prediction function

ℎ(𝑥𝑖) = 𝑤𝑇𝜙(𝑥𝑖). It is called "trick" because it avoids computing transforming the data points 𝑥𝑖 to the high

dimensional space of 𝜙(𝑥𝑖) for making complex and non-linear classifications decision boundary.

4.3 Linear regression with kernel trick

Linear regression uses the linear prediction ℎ(𝑥𝑖) = 𝑤𝑇𝑥𝑖 and the square loss function 𝑙(𝑤) in evaluating the

prediction:

𝑙(𝑤) = ∑(𝑤𝑇𝑥i − 𝑦i)
2

𝑛

𝑖=1

 … (1)

Where xi is of dimension (𝑑 + 1) × 1 including the bias and 𝑤 is the weights parameters of dimension (𝑑 +

1) × 1. The gradient descent rule, with step-size (or learning rate) 𝛼 > 0, updates w over time as 𝑤 = 𝑤 −

𝛼 (
𝜕𝑙

𝜕𝑤
), were, from (1):

𝜕𝑙

𝜕𝑤
= ∑ 2(𝑤𝑇xi − yi)xi

𝑛

𝑖=1

 … (2)

We can express 𝑤 as a linear combination of the input feature xi as: 𝑤 = ∑ 𝑠𝑖x𝑖
𝑛
𝑖=1 , were, 𝑠𝑖 ∈ 𝑅 (real number).

To prove that we are going to use induction. Denote 𝑤𝑡 as 𝑤 at iteration 𝑡 [12].

1) Base case: Since the loss function is a convex function of 𝑤, then the final solution of 𝑤 that minimize

the loss function is independent of the initial values of 𝑤 when applying gradient descent. Therefore, we can

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

154

initialize 𝑤0 = [
0
⋮
0
]. For this initial choice of 𝑤0 at iteration 0, the linear combination in 𝑤0 = ∑ 𝑠𝑖

0xI
𝑛
𝑖=1 is

trivial by setting 𝑠1
0 = 𝑠2

0 = ⋯ = 𝑠𝑛
0 = 0.

2) Assume at iteration t, 𝑤𝑡 = ∑ 𝑠𝑖
𝑡xI

𝑛
𝑖=1 is true, we need to show that 𝑤𝑡+1 = ∑ 𝑠𝑖

𝑡+1xI
𝑛
𝑖=1 is true. We can

show that from the update rule of w in the gradient descent algorithm as 𝑤𝑡+1 = 𝑤𝑡 − 𝛼 (
𝑑𝑙

𝑑𝑤
)

Using equation (2) for
𝑑𝑙

𝑑𝑤
:

𝑤𝑡+1 = 𝑤𝑡 − 𝛼 ∑ 2(𝑤𝑡𝑇
x𝑖 − 𝑦𝑖)x𝑖

𝑛
𝑖=1

Using the assumption 𝑤𝑡 = ∑ 𝑠𝑖
𝑡xI

𝑛
𝑖=1 , then rewrite the update rule for 𝑤𝑡+1 as:

𝑤𝑡+1 = ∑ 𝑠𝑖
𝑡xi

𝑛
𝑖=1 − 𝛼 ∑ 2(∑ 𝑠𝑗

𝑡xj
𝑇𝑛

𝑗=1 x𝑖 − 𝑦𝑖)x𝑖
𝑛
𝑖=1

Which we can rewrite as:

𝑤𝑡+1 = ∑ (𝑠𝑖
𝑡xi − 2𝛼(∑ 𝑠𝑗

𝑡xj
𝑇𝑛

𝑗=1 x𝑖 − 𝑦𝑖)x𝑖)
𝑛
𝑖=1

Taking xi as a common factor:

𝑤𝑡+1 = ∑ ((𝑠𝑖
𝑡 − 2𝛼(∑ 𝑠𝑗

𝑡xj
𝑇𝑛

𝑗=1 x𝑖 − 𝑦𝑖)) x𝑖)
𝑛
𝑖=1

Finally, setting 𝑠𝑖
𝑡+1 = 𝑠𝑖

𝑡 − 2𝛼(∑ 𝑠𝑗
𝑡𝑥𝑗

𝑇𝑥𝑖 − 𝑦𝑖
𝑛
𝑗=1), then we have:

𝑤𝑡+1 = ∑ 𝑠𝑖
𝑡+1x𝑖

𝑛
𝑖=1 ∎

This completes the proof.

From the previous proof, the update rule for 𝑠 is:

𝑠𝑖
𝑡+1 = 𝑠𝑖

𝑡 − 2𝛼 (∑ 𝑠𝑗
𝑡𝑥𝑗

𝑇𝑥𝑖 − 𝑦𝑖

𝑛

𝑗=1

) … (3)

Rewrite the loss function 𝑙(𝑤) in terms of 𝑠 by replacing 𝑤 with∑ 𝑠𝑖x𝑖
𝑛
𝑖=1 as follows:

𝑙(𝑤) = ∑ (𝑤𝑇x𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 From equation (1)

𝑙(𝑠) = ∑ ((∑ 𝑠𝑗𝑥𝑗
𝑛
𝑗=1)

𝑇
𝑥𝑖 − 𝑦𝑖)

2
𝑛
𝑖=1

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

155

𝑙(𝑠) = ∑(∑𝑠𝑗𝑥𝑗
𝑇𝑥𝑖 − 𝑦𝑖

𝑛

𝑗=1

)

2
𝑛

𝑖=1

 … (4)

The update rule for the 𝑠 in every iteration 𝑡 and for every data point 𝑖 is from equation (3):

𝑠𝑘
𝑡 = 𝑠𝑘

𝑡−1 − 2𝛼 ∑ (𝑠𝑗
𝑡𝑥𝑗

𝑇𝑥𝑖 − 𝑦𝑖)
𝑛
𝑗=1

In other words, we can perform the gradient descent update without expressing 𝑤 explicitly. We need to keep

track of the n-coefficient 𝑠1, ⋯ , 𝑠𝑛. In addition, we have the loss function 𝑙(𝑠) in terms of s.

During test time, we also need these coefficients 𝑠1, ⋯ , 𝑠𝑛to make a prediction of a test-input x𝑡, and we can

write the entire classifier ℎ(x𝑖) in terms of the inner-product between the test point and the training points:

ℎ(xt) = 𝑤𝑇xt = ∑ 𝑠𝑗x𝑗
𝑇xt

𝑛
𝑗=1

The gradient descent algorithm becomes as follows:

1) Initialize 𝑠1 = 𝑠2 = ⋯ = 𝑠𝑛 = 0

2) For k=1 to max_iterations:

a. Initialize loss = 0

b. For each training example x𝑖 ∈ 𝐷 (𝐷 is dataset)

i. Update 𝑠𝑖 = 𝑠𝑖 − 2𝛼(∑ 𝑠𝑗𝑥𝑗
𝑇𝑥𝑖 − 𝑦𝑖

𝑛
𝑗=1)

ii. Compute the loss: 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠 + (∑ 𝑠𝑗xj
𝑇xi − 𝑦𝑖

𝑛
𝑗=1)

2

The inner product: xj
Tx𝑖 keep appearing in the above algorithm. If we replace xi with Φ(xi) that is very high

dimensional space. Then we must replace the inner product 𝑥𝑗
𝑇x𝑖 with Φ(xj)

𝑇
Φ(xi) in which requires very large

memory space and computation resources.

If Φ(x) generate all polynomials, i.e.

[

1
𝑥1

⋮
𝑥𝑑

𝑥1𝑥2

⋮
𝑥𝑑−1𝑥𝑑

𝑥𝑑𝑥𝑑

𝑥1𝑥2𝑥3

⋮
𝑥1𝑥2𝑥3 ⋯𝑥𝑑]

 with dimension 2𝑑 × 1. Then Φ(xj)
𝑇
Φ(xi) can be

formulated as, rename variables x𝑖 and x𝑗 as x and z, respectively for simplicity of notations, each of dimension

𝑑 × 1: x = [

𝑥1

⋮
𝑥𝑑

] and z = [

𝑧1

⋮
𝑧𝑑

]

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

156

The mapping 𝜙(x) and 𝜙(z) is:𝜙(x) =

[

1
𝑥1

⋮
𝑥𝑑

𝑥1𝑥2

⋮
𝑥𝑑−1𝑥𝑑

𝑥1𝑥2𝑥3

⋮
𝑥1𝑥2𝑥3 ⋯𝑥𝑑]

and ϕ(z) =

[

1
𝑧1

⋮
𝑧𝑑

𝑧1𝑧2

⋮
𝑧𝑑−1𝑧𝑑

𝑧1𝑧2𝑧3

⋮
𝑧1𝑧2𝑧3 ⋯𝑧𝑑]

Then, the inner product of 𝜙(x)ϕ(z) is:

ϕ(x)ϕ(z) = 1 ⋅ 1 + 𝑥1𝑧1 + ⋯+ 𝑥𝑑𝑧𝑑 + 𝑥1𝑥2𝑧1𝑧2 + ⋯+ 𝑥1 ⋯𝑥𝑑𝑧1 ⋯𝑧𝑑

However, we can rewrite the inner product 𝜙(x)ϕ(z) as: ϕ(x)ϕ(𝑧) = ∏ (1 + 𝑥𝑘𝑧𝑘)
𝑑
𝑘=1 [4]

We can prove this using mathematical induction:

1) Base case, if d=2 then we have: x = [
𝑥1

𝑥2
] and z = [

𝑧1

𝑧2
]

Then: 𝜙(x) = [

1
𝑥1

𝑥2

𝑥1𝑥2

] and 𝜙(z) = [

1
𝑧1

𝑧2

𝑧1𝑧2

]

The inner product is: 𝜙(x)𝜙(z) = 1 ⋅ 1 + 𝑥1𝑧1 + 𝑥2𝑧2 + 𝑥1𝑥2𝑧1𝑧2 = ∏ (1 + 𝑥𝑘𝑧𝑘)
2
𝑘=1

Since: (1 + 𝑥1𝑧1)(1 + 𝑥2𝑧2) = 1 + 𝑥1𝑧1 + 𝑥2𝑧2 + 𝑥1𝑥2𝑧1𝑧2

2) Assume, x and z are of dimension 𝑑 × 1, and 𝜙(x)𝜙(z) = ∏ (1 + 𝑥𝑘𝑧𝑘)
𝑑
𝑘=1 Then we need to show

that, if x and z are of dimension (𝑑 + 1) × 1, then 𝜙(x)𝜙(z) = ∏ (1 + 𝑥𝑘𝑧𝑘)
𝑑+1
𝑘=1 ?

Expand 𝜙(𝑥)𝑇𝜙(𝑧):

𝜙(x)ϕ(z) = 1 + 𝑥1𝑧1 + ⋯+ 𝑥𝑑𝑧𝑑 + 𝑥𝑑+1𝑧𝑑+1 + 𝑥1𝑥2 𝑧1𝑧2 + ⋯+ 𝑥𝑑−1𝑥𝑑𝑧𝑑−1𝑧𝑑 + 𝑥𝑑𝑥𝑑+1𝑧𝑑𝑧𝑑+1 + ⋯ +

𝑥1𝑥2 …𝑥𝑑𝑧1𝑧2 … 𝑧𝑑 + 𝑥1𝑥2 … 𝑥𝑑𝑥𝑑+1𝑧1𝑧2 … 𝑧𝑑𝑧𝑑+1

Expand the term: ∏ (1 + 𝑥𝑘𝑧𝑘)
𝑑+1
𝑘=1 :

∏ (1 + 𝑥𝑘𝑧𝑘)
𝑑+1
𝑘=1 = ∏ (1 + 𝑥𝑘𝑧𝑘)

𝑑
𝑘=1 (1 + 𝑥𝑑+1𝑧𝑑+1)

From the assumption:

∏ (1 + 𝑥𝑘𝑧𝑘)
𝑑
𝑘=1 = 1 + 𝑥1𝑧1 + ⋯+ 𝑥𝑑𝑧𝑑 + 𝑥1𝑥2𝑧1𝑧2 + ⋯ + 𝑥𝑑−1𝑥𝑑𝑧𝑑−1𝑧𝑑 + 𝑥1𝑥2𝑥3𝑧1𝑧2𝑧3 + ⋯+

𝑥1𝑥2 …𝑥𝑑𝑧1𝑧2 … 𝑧𝑑

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

157

∏ (1 + 𝑥𝑘𝑧𝑘)
𝑑+1
𝑘=1 = ∏ (1 + 𝑥𝑘𝑧𝑘)

𝑑
𝑘=1 (1 + 𝑥𝑑+1𝑧𝑑+1)

= (1 + x1𝑧1 + ⋯+ xdzd + x1x2 z1z2 + ⋯+ xd−1xdzd−1zd + ⋯+ x1x2 … xd𝑧1𝑧2 …zd)(1 + x𝑑+1z𝑑+1)

= 1 + 𝑥1𝑧1 + ⋯𝑥𝑑+1𝑧𝑑+1 + 𝑥1𝑥2𝑧1𝑧2 + ⋯𝑥𝑑𝑥𝑑+1𝑧𝑑𝑧𝑑+1 + ⋯ + 𝑥1𝑥2 … 𝑥𝑑+1𝑧1𝑧2 …𝑧𝑑+1

This last term matches: 𝜙(𝑥)𝑇𝜙(𝑧). ∎

This completes the proof.

The sum of 2𝑑 terms become the product of d terms. We can compute the inner-product from the above formula

in time O(d) instead of O(2𝑑). Therefore, we define the function:

𝑘(x𝑖 , x𝑗) = Φ(x𝑖)Φ(x𝑗)

Where 𝑘(x𝑖 , x𝑗) is called kernel function. With finite training set of n samples, the inner products are often pre-

computed and stored in a Kernel matrix 𝐾𝑖𝑗 = ϕ(x𝑖)𝜙(xj).

If we store the matrix K, we only need to do simple inner-product lookups and low dimensional computations

throughout the gradient descent algorithm. The final classifier becomes:ℎ(xt) = ∑ 𝑠𝑗
𝑛
𝑗=1 𝑘(xj, xt).

During training in new high dimension space of 𝜙(x) we want to compute 𝑠𝑖 using the update rule in equation

(3), rewritten here:

𝑠𝑖 = 𝑠𝑖 − 2𝛼(∑ 𝑠𝑗𝑥𝑗𝑥𝑖 − 𝑦𝑖
𝑛
𝑗=1) = 𝑠𝑖 − 2𝛼(∑ 𝑠𝑗𝐾𝑖𝑗

𝑛
𝑗=1 − 𝑦𝑖)

The loss function can be computed as: 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠 + ((∑ 𝑠𝑗Kij
𝑛
𝑗=1) − 𝑦𝑖)

2

The amount of work per gradient update in the transformed space is O(𝑛2) far better than O(2𝑑).

The gradient descent algorithm revised is as follows:

1) Initialize 𝑠1 = 𝑠2 = ⋯ = 𝑠𝑛 = 0

2) Compute 𝐾𝑖𝑗 = 𝑥𝑖𝑥𝑗

3) For k=1 to max_iterations:

a. Initialize loss = 0

b. For each training example x𝑖 ∈ 𝐷

i. Update 𝑠𝑖 = 𝑠𝑖 − 2𝛼(∑ 𝑠𝑗𝐾𝑖𝑗 − 𝑦𝑖
𝑛
𝑗=1)

ii. Compute the loss: 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠 + (∑ 𝑠𝑗𝐾𝑖𝑗 − 𝑦𝑖
𝑛
𝑗=1)

2

4) Do predictions: ℎ(𝑥𝑡) = ∑ 𝑠𝑗
𝑛
𝑗=1 𝑘(xj, xt)

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

158

4.4 Linear regression with L2-regularization (ridge regression kernel KRR)

Adding L2-regularization to the square loss function is 𝑙(𝑤) = ∑ (𝑤𝑇𝑥𝑖 − 𝑦)2𝑛
𝑖=1 + 𝜆‖𝑤‖2

2.

The derivative of the loss function with respect to w is:

𝜕𝑙

𝜕𝑤
= ∑ 2(𝑤𝑇𝑥𝑖 − 𝑦𝑖)𝑥𝑖

𝑛
𝑖=1 + 2𝜆𝑤

We can rewrite the loss and the derivative in terms of the coefficients 𝑠1, 𝑠2, ⋯ , 𝑠𝑛 using 𝑤 = ∑ 𝑠𝑖𝑥𝑖
𝑛
𝑖=1 :

𝑙(𝑠) = ∑ ((∑ 𝑠𝑗𝑥𝑗
𝑛
𝑗=1)𝑥𝑖 − 𝑦𝑖)

2
𝑛
𝑖=1 + 𝜆‖∑ 𝑠𝑗𝑥𝑗

𝑛
𝑗=1 ‖

2

2

𝜕𝑙

𝜕𝑤
= ∑ ∑ 2(𝑠𝑗𝑥𝑗𝑥𝑖 − 𝑦𝑖)𝑥𝑖

𝑛
𝑗=1

𝑛
𝑖=1 + 2𝜆 ∑ 𝑠𝑖𝑥𝑖

𝑛
𝑖=1

𝜕𝑙

𝜕𝑤
= 2∑ ∑ (𝑠𝑗𝑥𝑗𝑥𝑖 − 𝑦𝑖)𝑥𝑖

𝑛
𝑗=1 + 𝜆𝑠𝑖𝑥𝑖

𝑛
𝑖=1

Since we wrote the loss function and its derivate in terms of the coefficients 𝑠1, ⋯ , 𝑠𝑛 then we can proceed as

before in the update rule of the coefficient 𝑠1, ⋯ , 𝑠𝑛:

𝑠𝑖 = 𝑠𝑖 − 2𝛼 ((∑ (𝑠𝑗𝑥𝑗𝑥𝑖 − 𝑦𝑖)
𝑛
𝑗=1) + 𝜆𝑠𝑖𝑥𝑖)

The prediction is the same as before: ℎ(𝑥𝑡) = ∑ 𝑠𝑗
𝑛
𝑗=1 𝑘(𝑥𝑗 , 𝑥𝑡)

5. Properties of Kernel functions

The kernel matrix 𝐾 must be symmetric [1, 2], i.e. 𝐾𝑖𝑗 = 𝐾𝑗𝑖 and matrix 𝐾 is positive semi-definite [3, 4].

Definition: A matrix A ∈ 𝑅𝑛× 𝑛 is positive semi-definite if and only if ∀𝑞 ∈ 𝑅𝑛 , 𝑞𝑇𝐴𝑞 ≥ 0.

We can show that the kernel matrix K is symmetric since 𝐾𝑖𝑗 = 𝑘(𝑥𝐼 , 𝑥𝑗) = 𝜙(𝑥𝑖) ⋅ 𝜙(𝑥𝑗) = 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗) =

𝜙(𝑥𝑗)
𝑇
𝜙(𝑥𝑖) = 𝜙(𝑥𝑗) ⋅ 𝜙(𝑥𝑖) = 𝑘(𝑥𝑗 , 𝑥𝑖) = 𝐾𝑗𝑖.

To prove the kernel matrix K is a positive semi-definite then we need to show that 𝑞𝑇𝐾𝑞 ≥ 0 for any vector 𝑞.

Let 𝜙𝑘(𝑥) denote the k
th

 coordinate of the vector 𝜙(𝑥), we find that for any vector 𝑞, we have:

𝑞𝑇𝐾𝑞 = ∑ ∑ 𝑞𝑖𝐾𝑖𝑗𝑞𝑗𝑗𝑖

 = ∑ ∑ 𝑞𝑖𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗)𝑗 𝑞𝑗𝑖

 = ∑ ∑ 𝑞𝑖 ∑ 𝜙𝑘(𝑥𝑖)𝜙𝑘(𝑥𝑗)𝑞𝑗𝑘𝑗𝑖

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

159

 = ∑ ∑ ∑ 𝑞𝑖𝜙𝑘(𝑥𝑖)𝜙𝑘(𝑥𝑗)𝑞𝑗𝑘𝑗𝑖

 = ∑ ∑ ∑ 𝑞𝑖𝜙𝑘(𝑥𝑖)𝜙𝑘(𝑥𝑗)𝑞𝑗𝑗𝑖𝑘

 = ∑ (∑ 𝑞𝑖𝜙𝑘(𝑥𝑖)𝑖)2
𝑘 ≥ 0

The second-to-last step uses the fact that ∑ ∑ 𝑎𝑖𝑎𝑗𝑗𝑖 = (∑ 𝑎𝑖𝑖)2 for 𝑎𝑖 = 𝑞𝑖𝜙𝑘(𝑥𝑖). Since 𝑞 was arbitrary, then it

follows that 𝐾 is a positive semi-definite matrix.

Hence, we have shown that if 𝐾 is a kernel matrix for some feature mapping 𝜙, then the corresponding kernel

matrix 𝐾 ∈ 𝑅𝑛×𝑛 is symmetric positive semi-definite matrix.

The kernel matrix 𝐾 that is symmetric and positive semi-definite is called Mercer kernel due to Mercer theorem:

Theorem (Mercer). Let 𝐾: 𝑅𝑑 × 𝑅𝑑 → 𝑅 be given. Then for 𝐾 to be a valid (Mercer) kernel, it is necessary and

sufficient that for any {𝑥1, ⋯ , 𝑥𝑛}, 𝑛 < ∞, then the corresponding kernel matrix 𝐾 is symmetric positive semi-

definite matrix.

6. Popular Kernels

Some of the popular kernels:

1) Linear: 𝑘(𝑥, 𝑧) = 𝑥 ⋅ 𝑧 this is just the linear regression with L2 regularization, but it can be faster to use a

kernel matrix if the dimension d of the input features is high.

2) Polynomial 𝑘(𝑥, 𝑧) = (1 + 𝛾𝑥 ⋅ 𝑧)𝑑 that depends on the polynomial degree d and gamma 𝛾.

3) Radial Basis Function (RBF) (aka Gaussian Kernel): 𝑘(𝑥, 𝑧) = 𝑒
−

‖𝑥−𝑧‖2

2𝜎2 = 𝑒−𝛾‖𝑥−𝑧‖2
. The RBF kernel is

the most popular Kernel; it is a universal approximator.

4) Laplacian kernel: 𝑘(𝑥, 𝑧) = 𝑒−𝛾‖𝑥−𝑧‖

5) Sigmoid kernel: 𝑘(𝑥, 𝑧) = 𝑡𝑎𝑛ℎ(𝛾𝑥𝑇𝑧 + 𝑐)

To show that the Radia Basis Function (RBF) corresponds to a kernel matrix K; we need to show that K is

symmetric and positive semi-definite.

Symmetric: 𝐾𝑖𝑗 = 𝑒
−

‖𝑥𝑖−𝑥𝑗‖
2

2𝜎2 = 𝑒
−

‖𝑥𝑗−𝑥𝑖‖
2

2𝜎2 = 𝐾𝑗𝑖 (trivial case).

Positive semi-definite: we need to show that 𝑞𝑇𝐾𝑞 ≥ 0

𝑞𝑇𝐾𝑞 = ∑ ∑ 𝑞𝑖𝐾𝑖𝑗𝑞𝑗𝑗𝑖

 = ∑ ∑ 𝑞𝑖𝑒
−

‖𝑥𝑖−𝑥𝑗‖
2

2𝜎2 𝑞𝑗𝑗𝑖

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

160

 = ∑ ∑ 𝑞𝑖𝑞𝑗𝑒
−

‖𝑥𝑖−𝑥𝑗‖
2

2𝜎2
𝑗𝑖

 = ∑ ∑ 𝑞𝑖𝑞𝑗

√
𝑒

−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2
𝑗𝑖

√
𝑒

−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2

 = ∑ ∑ (𝑞𝑖

√
𝑒

−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2)𝑗𝑖 (𝑞𝑗

√
𝑒

−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2)

 = ∑ (𝑞𝑖

√
𝑒

−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2)

2

 𝑖 ≥ 0

So, indeed the RBF kernel matrix K is a positive semi-definite matrix. Therefore, the RBF is a valid kernel

function. Similarly, we can show Exponential kernel matrix and Laplacian kernel matrix are symmetric and

positive semi-definite matrices.

For Sigmoid kernel function 𝑡𝑎𝑛ℎ(𝛾𝑥𝑇𝑧 + 𝑐), we can show that the matrix K corresponds to Sigmoid kernel

function is symmetric and positive semi-definite matrix as follows:

Symmetric: 𝐾𝑖𝑗 = 𝑡𝑎𝑛ℎ(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑐) = 𝐾𝑗𝑖 = 𝑡𝑎𝑛ℎ(𝛾𝑥𝑗

𝑇𝑥𝑖 + 𝑐)

Positive semi-definite matrix:

𝑞𝑇𝐾𝑞 = ∑ ∑ 𝑞𝑖𝑞𝑗𝐾𝑖𝑗𝑗𝑖

 = ∑ ∑ 𝑞𝑖𝑞𝑗 𝑡𝑎𝑛ℎ(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑐)𝑗𝑖

 = ∑ ∑ 𝑞𝑖𝑞𝑗𝑗 (√𝑡𝑎𝑛ℎ(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑐))(√𝑡𝑎𝑛ℎ(𝛾𝑥𝑖

𝑇𝑥𝑗 + 𝑐))𝑖

 = ∑ ∑ (𝑞𝑖√𝑡𝑎𝑛ℎ(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑐))(𝑞𝑗√𝑡𝑎𝑛ℎ(𝛾𝑥𝑖

𝑇𝑥𝑗 + 𝑐))𝑗𝑖

 = ∑ ∑ (𝑞𝑖√𝑡𝑎𝑛ℎ(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑐))

2

𝑗𝑖 ≥ 0

So, indeed the Sigmoid kernel matrix K is positive semi-definite matrix. Therefore, the Sigmoid function is a

valid kernel function.

7. Applications for Kernels

Kernels find applications across various machine learning algorithms, including:

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

161

 Support Vector Machines (SVMs): SVMs utilize kernels to map data into high-dimensional spaces,

enabling the learning of nonlinear decision boundaries [13, 14, 15, 16, 17, 18].

 Kernel Ridge Regression: In kernel ridge regression, kernels are used to regularize the regression problem

in high-dimensional spaces, preventing overfitting [13, 16, 17, 18].

 Kernel Principal Component Analysis (PCA): Kernels are employed in kernel PCA to perform nonlinear

dimensionality reduction, preserving complex structures in the data [18, 19].

 Kernelized deep learning which uses linear activations to account for non-linearity by the kernel trick [13,

21, 22, 23, 24].

 Kernelized clustering: Kernel methods can be applied to clustering algorithms such as kernel k-means or

spectral clustering. By employing kernel functions, these algorithms can effectively cluster data points in

nonlinearly separable spaces [25].

8. Experimental Results

The library sklearn in Python provides kernel ridge regression (KRR) [26], it combines the linear regression

with kernel trick that uses square loss and L2-norm regularization. The use of kernel trick means it handles

nonlinear data without the need for explicit transformation into a higher-dimensional space. Kernel trick is a

mathematical kernel function that computes the dot products in the high-dimensional feature space without

explicitly mapping the data into that space. The following is the syntax for the linear regression kernel in

sklearn:

class sklearn.kernel_ridge.KernelRidge (alpha=1, *, kernel = 'linear', gamma = None, degreee = 3, coef0=1)

where alpha (α) is the regularize coefficient (λ in the section 2), kernel can be ‘linear’, poly’ or ‘polynomial’,

‘rbf’, ‘laplacian’, ‘sigmoid’. The parameter gamma is
1

2σ2 in ‘rbf’, sigmoid, polynomial and Laplacian. In Kernel

Ridge Regression, the parameter gamma plays a critical role in defining the behavior of kernel functions. High

values of gamma lead to more complex models, while lower gamma results in smoother, more generalized

models. The degree parameter is used with polynomial kernel.

In addition, you can define your own kernel function by providing kernel call back function that will be applied

to each pair of samples in the training dataset. The callable function should take two rows from input X and

return the corresponding kernel value as a single number. Also, you can set the kernel as pre-computed which

means that the input X is assumed to be a kernel matrix.

Applying Kernel Ridge from sklearn on bike sharing demand dataset from Kaggle competition (where the target

variable is the number of rentals per day). We tried different kernels like linear kernels, polynomial kernels,

RBF kernels, Laplacian kernels and user defined kernels.

8.1. Effect of certain parameters tuning

In Kernel Ridge Regression (KRR), the performance of the model depends heavily on the choice of the kernel

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

162

function and its associated parameters (e.g., gamma, degree, coef0) for the bike sharing demand dataseet. In

each case, choosing the best parameter that minimizes the RMSE for the test set as this indicates the best

generalization performance, ensuring that the train RMSE is not too low at this point (to avoid overfitting).

8.1.1. Effect of polynomial degree in polynomial kernel

Low degree works well for linear or slightly non-linear relationships. For bike sharing demand dataset, a low

degree polynomial might capture simple trends like linear increase in demand during weekends or holidays. On

the other hand, high degrees work for highly non-linear relationships. For the bike sharing demand dataset,

polynomial degree might capture complex interactions between features (e.g., temperature, humidity and

seasonality). However, it might overfit if the degree is too high, leading to poor generalization. Figure 2

illustrates the effect of the polynomial degree on the root mean square error (RMSE).

Figure 2: Effect of the polynomial degree on the model’s root mean square error.

Figure 2 shows the change in RMSE on the training and test set as the degree of the polynomial kernel

increases, the optimal degree is the lowest RMSE that is at degree=4. A lower degree less than 4; the model is

underfit while higher degree more than 4; the model overfit.

8.1.2. Effect of polynomial coef0 in polynomial kernel

The coefficient (bias) term in Polynomial kernel and Sigmoid Kernels is either zero or non-zero value. When the

coefficient is zero, the model is simplified by removal of the bias term, this might work well if the data is

centered around zero, but it could underfit if the data has a non-zero baseline. However, when the coefficient is

non-zero, this adds flexibility to the model by introducing a bias term. For the bike sharing demand dataset, this

might help capture the baseline demand levels. Figure 3 shows the train and test data when the bias term is

added in the case of the bike sharing demand dataset. Figure 3 shows a line plot of the RMSE of the train and

test set change as coefficient (bias) term varies. When the coefficient is zero, the error is high for train and test

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

163

indicating that the model underfit. When the coefficient is non-zero, then the train and test errors are closer

which allow the model to better fit the data. The best bias term (coef0) is at 1.

Figure 3: Effect of the coefficient (bias) term on the model accuracy, for polynomial kernel with degree=4.

8.1.3. Effect of gamma on model error

Gamma determines the scale of the kernel (𝛾(𝑥 ⋅ 𝑧)), hence small gamma means a larger radius of influence for

each training sample, so the kernel function decay slowly (smooth decay) that makes the model less sensitive to

small fluctuations or noise in data; while large gamma means a smaller radius of influence, so the kernel

function decays more quickly with the distance causing the model highly sensitive to small fluctuations or noise

in the data. However, too small values of gamma cause the model to underfit, and too large gamma causes the

model to overfit.

Figure 4: Effect of Gamma on polynomial kernel with degree d=4.

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

164

Figure 4 shows the effect of gamma on the polynomial kernel RMSE with degree 4 and coefficient of 1, when

gamma is small (𝛾 =0.01), the error was high, as gamma increases, the error decreases, the best gamma is in the

range (0.1-1.5).

Figure 5: Effect of Gamma on RBF kernel

Figure 5 shows the effect of gamma on the RBF kernel RMSE on the train and test set, as gamma increases the

model overfit. When the gamma is low, the model underfit. The best gamma is 𝛾 =0.1.

Figure 6: Effect of gamma on Laplacian kernel

Figure 6 shows the effect of gamma on the Laplacian kernel RMSE. As gamma increases the model overfit. As

gamma is low, the model underfit. The best gamma is 𝛾 =0.03. The training error and test error dropped to

91.05 and 92.33, respectively; that is below the best RBF and Polynomial kernels.

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

165

Figure 7: Effects of Gamma on Sigmoid Kernel.

Figure 7 shows the effect of gamma on Sigmoid kernel RMSE. As gamma increases the model overfit. As

gamma is low, the model underfit. The best gamma is 𝛾 =0.1.

8.1.4. Comparing different kernels

Figure 8 shows a bar chart of the train and the test RMSE for each kernel on the bike sharing demand. The

Laplacian has the lowest root mean-square-error (RMSE), indicating that it generalizes better to the bike sharing

demand dataset compared to the other kernels.

Figure 8: The bar chart shows the RMSE for train and test for each kernel with its best parameters for the bike

sharing demand dataset.

Figure 9 shows a bar chart of the mean absolute error (MAE) for the train and test sets for each kernel on the

bike sharing demand. The Laplacian has the lowest mean-absolute-error (MAE), indicating that it generalizes

better to the bike sharing demand dataset compared to the other kernels.

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

166

Figure 9: The bar chart shows the MAE for train and test for each kernel with its best parameters for the bike

sharing demand dataset.

The Laplacian kernel uses the L1 norm (Manhattan distance), which is less sensitive to outliers compared to the

L2 norm (Euclidean distance) used in the RBF kernel. Also, the Laplacian kernel decays more slowly than the

RBF kernel, meaning it has a wider influence for each training example, this allows it to capture localized

patterns in the data (e.g., sudden change in demand due to specific weather conditions) while still maintaining

smoothness. In addition, Laplacian can model nonlinear relationships effectively, meaning it can capture the

complex interactions between features like temperature, humidity and time of day in the bike sharing demand

dataset.

Linear kernel performs poorly because the relationship between features in the bike sharing demand dataset is

highly non-linear. The RBF kernel performs well but is lightly worse than the Laplacian kernel because it uses

the L2 norm, making it more sensitive to outliers and tends to overfit if gamma is too large. The polynomial

kernel performs well but is less flexible than the Laplacian kernel and requires careful tuning the degree and

coefficient (bias) term, but it can overfit when the degree is too high.

In the bike sharing dataset, outliers might occur due to sudden spikes or drops in demand (e.g., during extreme

weather events or holidays). The Laplacian kernel handles these outliers better, leading to more robust

predictions.

Table 1 is a comparison between different kernel regression models with their strengths and weaknesses.

You can also define your own kernel using the sklearn. Figure 10 shows a code snippet of defining an

exponential kernel that is not built-in sklearn library. Using the exponential kernel returns RMSE 105.67 for

train and 111.30 for test.

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

167

Figure 10: Code snippet for defining exponential kernel.

Table 1: Comparison summary between kernel regression models

Kernel

model

Strengths Weaknesses

Linear

kernel

Simple and computationally efficient. Works

well if the relationship between features and

target is linear.

cannot capture nonlinear relationships.

Likely to underfit the bike sharing dataset,

which has complex interactions between

features.

Polynomial

kernel

Can capture polynomial relationships between

features. Works well for modeling interactions

between features (e.g., temperature and

humidity).

Requires tuning of degree and coef0. Can

overfit if the degree is too high.

RBF

Kernel

Can capture nonlinear relationships and

localized patterns. Works well for modeling

smooth trends like seasonality and sudden

changes due to weather.

Requires careful tuning of gamma to avoid

overfitting or underfitting.

Computationally more expensive than the

linear kernel.

Sigmoid

kernel

Can model S-shaped relationships. Might work

well for certain types of nonlinear data.

Less commonly used for regression tasks

like bike sharing demand prediction.

Requires careful tuning of gamma and

coef0

8.1.5. Predicted vs. actual plot

Figure 11 shows the predicted vs. actual plot that visualizes how well the best performing kernel that is

Laplacian kernel captures the underlying patterns in the bike sharing demand dataset. This plot compares the

model’s prediction against the true values, providing a clear visual representation of the model’s performance.

The diagonal line represents the perfect prediction where the predicted value equals the actual value. The scatter

points represent each point in the test set. The points are clustered closely around the diagonal line, which means

that the model is accurately predicting the bike sharing demand. This indicates that the Laplacian kernel is

effectively capturing the underlying patterns in the data.

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

168

Figure 11: Plot of the predicated target vs the actual target for the bike sharing demand dataset using Laplacian

kernel.

8.1.6. Heat map of RMSE Variance for Different Kernel Parameters

Figure 12: Heat map of how RMSE varies with different combinations of gamma and alpha in Laplacian kernel

for bike sharing demand dataset.

Figure 12 shows the optimal values of gamma and alpha with the lowest RMSE in Laplacian kernel for the bike

sharing demand dataset, this is indicated by the darkest color in the heatmap. The best values are Gamma=0.001

and alpha=0.001 which produces train RMSE of 88.02 and test RMSE of 90.96.

8.1.7. Learning curve

Learning curves are a powerful tool for diagnosing whether a model is overfitting or underfitting. They plot the

training error and test error as a function of the number of training samples. By analyzing these curves, you can

gain insights into the model's performance and identify potential issues.

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

169

Figure 13 shows the learning curve when using the optimal parameters for the Laplacian Kerner for the bike

sharing demand dataset. Both the training RMSE and validation RMSE are low and converge as the number of

training samples increases. A small gap indicates that the mode generalizes well to unseen data.

Figure 13: Learning curve for the Laplacian Kernel in the bike sharing demand dataset

8.2. Limitation of linear regression kernels in sklearn

Linear regression kernels in sklearn can be computationally expensive for large datasets due to the need to

compute the kernel matrix. For the bike sharing demand dataset the shape of the dataset is (10886, 12); The bike

sharing demand dataset may be limited in size, especially if it only covers a short time-period or a small

geographic area. This works well for Kernel regression. However, trying kernel on bigger size datasets like the

backpack price prediction from Kaggle; the data shape was (300000, 26) after converting categorical columns to

one hot encoding, the kernel regression produces an insufficient memory because the kernel matrix is of size

300000 × 300000 = 9 × 1010. This limits the scalability of the approach to very large datasets or real-time

applications. As a future work, explore scalable kernel approximations, such as the Nyström method [27, 28] or

random Fourier features [27], to reduce computational complexity.

Kernel methods are highly sensitive to hyperparameters like gamma, degree, and coef0. Poorly tuned

hyperparameters can lead to suboptimal performance, either underfitting or overfitting the data. An advanced

method that automates hyperparameters tuning can be used such as Bayesian optimization or genetic algorithms

to find the best hyperparameters more efficiently.

The performance of kernel methods depends heavily on the choice of kernel function (e.g., RBF, polynomial,

Laplacian). An inappropriate kernel choice can lead to poor model performance. As future research, an

investigation of adaptive kernel selection methods or ensemble approaches that combine multiple kernels to

improve robustness.

Another limitation is missing data. Missing data can reduce the quality of the model’s predictions and introduce

uncertainty. Missing values must be handled with advanced imputation techniques before using kernel

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

170

regression.

9. Conclusion

In conclusion, kernels play a crucial role in machine learning by enabling algorithms to operate effectively in

high-dimensional spaces and capture complex patterns in data. By mapping data to higher-dimensional feature

spaces, kernels allow algorithms like Support Vector Machines (SVMs) and Gaussian Processes (GPs) to

achieve greater flexibility and accuracy. This has significantly expanded the application of kernel methods

across a variety of tasks, reinforcing their value in modern machine learning.

The mathematical underpinnings of kernel methods, particularly the kernel trick, feature space transformations,

and properties such as positive semi-definiteness, are core to their effectiveness. These mathematical concepts

allow kernel methods to efficiently compute complex data relations without explicitly constructing high-

dimensional feature spaces. This efficiency is vital for models working with non-linear data and provides a

computationally feasible approach to problem-solving in diverse domains. Kernel methods applied across a

broad range of domains, including image recognition, natural language processing, and bioinformatics.

Future research directions may include exploring novel kernel functions tailored to specific applications,

developing efficient kernel methods for large-scale datasets, and investigating the theoretical properties of

kernel-based learning algorithms. Despite the success of kernel methods, there are exciting areas for further

exploration. Future research could focus on improving computational efficiency for large-scale datasets.

Investigation of adaptive kernel selection methods or ensemble approaches that combine multiple kernels to

improve robustness. Additionally, integrating kernel methods with deep learning offers new avenues for hybrid

approaches. However, challenges remain, particularly with scalability in big data environments, which present

ongoing research opportunities and motivate the development of advanced kernel techniques.

References

[1] Antoine Bordes, Seyda Ertekin, Jason Weston, L𝐞́on Bottou “Fast Kernel Classifiers with Online and

Active Learning”. Journal of Machine Learning Research 6, pages 1579-1619, (2005).

[2] Bernhard Sch𝐨̈lkopf, Alexander J. Smola, “Leaning with Kernels”. The MIT Press, 2002. ISBN 0-262-

19475-9

[3] K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda and B. Scholkopf, "An introduction to kernel-based learning

algorithms," in IEEE Transactions on Neural Networks, vol. 12, no. 2, pp. 181-201, March 2001

[4] Mercer, J., "Functions of positive and negative type and their connection with the theory of integral

equations", Philosophical Transactions of the Royal Society A, 209 (441–458): 415–446, 1909.

[5] Cortes, C. and Vapnik, V., “Support-Vector Networks”. Machine Learning, 20, 273-297, 1995.

http://dx.doi.org/10.1007/BF00994018.

http://dx.doi.org/10.1007/BF00994018

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

171

[6] Saunders, C., Gammerman, A. and Vovk V., “Ridge Regression Learning Algorithm in Dual

Variables”. ICML 98: Proceedings of the Fifteenh International Conference on Machine Learning.

Pages 515-521, 1998.

[7] Schölkopf et al., “Kernel Methods in Computational Biology”. 2004 MIT Press (July 16, 2004)

[8] Schölkopf B. and Smola, A., “Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond”. The MIT Press, Cabridge Massachusetts, London, England. 2004.

[9] Genton, M. G., “Classes of Kernels for Machine Learning: A Statistics Perspective”. Journal of

Machine Learning Research 2, 299-312, 2001.

[10] Bergstra, J. and BengioRandom, Y., “Search for Hyper-Parameter Optimization”. Journal of Machine

Learning Research 13, 281-305, 2012.

[11] Snoek , J., Larochelle, H. and Adams, R. P. “Practical Bayesian Optimization of Machine Learning

Algorithms”. Curran Associates, Inc.Vol 25, 2012.

[12] Weinberger., K., “Kernel Notes from Cornell CS4780 class”, Internet:

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote13.html. Spring 2017

[13] Zareapoor, M., Shamsolmoali, P., Jain, D. K., Hoaxiang W. and Jie Y., “Kernelized support vector

machine with deep learning: An efficient approach for extreme multiclass dataset”. Pattern Recognition

Letterss, volume 115, pages 4-13, 2018.

[14] Herbrich, R., “Learning Kernel Classifiers Theory and Algorithms”. The MIT Press, 2001, ISBN:

9780262256339.

[15] Schölkopf, B., and Smola, A. J., “Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond”. MIT Press, 2002.

[16] Shawe-Taylor, J. and Cristianini, N. “Kernel Methods for Pattern Analysis”. Cambridge University

Press, 2004.

[17] Hofmann, T., Scholkopf, B. and Smola, A. J., “A Review of Kernel Methods in Machine Learning”.

Max Planck Institute for Biological Cybernetics, Technical report No. 156, 2006.

[18] Hofmann, T., Schölkopf. B., and Smola, A. J., "Kernel methods in machine learning" Annals of

Statistics 36 (3) 1171 - 1220, June 2008.

[19] Schölkopf, B., Smola, Alex; and Müller, Klaus-Robert, "Nonlinear Component Analysis as a Kernel

Eigenvalue Problem". Neural Computation. 10 (5): 1299–1319, 1998.

doi:10.1162/089976698300017467. S2CID 6674407.

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1162%2F089976698300017467
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:6674407

International Journal of Computer (IJC) - Volume 53, No 1, pp 150-172

172

[20] Schölkopf, B., Smola, Alex. and Müller, Klaus-Robert, Nonlinear Component Analysis as a Kernel

Eigenvalue Problem (PDF) (Technical report). Max-Planck-Institut für biologische Kybernetik. 44,

1996.

[21] Wilson A., Hu Zhiting, Salakhutdinov R. and Xing P. E., “Deep Kernel Learning”. Published of the

19
th

 International Conference on Artificial Intelligence and Statistics, 6 November 2015.

[22] Majumdar, A. “Kernelized Linear Autoencoder”. Neural Process Lett 53, 1597–1614 (2021).

https://doi.org/10.1007/s11063-021-10467-0

[23] Zheng, X., Ni, Z., Zhong X. and Luo Y., "Kernelized Deep Learning for Matrix Factorization

Recommendation System Using Explicit and Implicit Information," in IEEE Transactions on Neural

Networks and Learning Systems, vol. 35, no. 1, pp. 1205-1216, Jan. 2024, doi:

10.1109/TNNLS.2022.3182942.

[24] Cho, Y. and Saul, L., “Kernel methods for deep learning”. Advances in neural information processing

systems, 2022.

[25] Wu, C., Khan, Z., Chang, Y., Ioannidis, S. and Dy, J., “Deep Kernel Learning for Clustering”.

Proceedings of the 2020 SIAM International Conference on Data Mining, pages 640-648, 2020.

[26] Murphy, K. P., “Machine Learning: A probabilistic Perspective”. The MIT Press, Chapter 14.4.3, pp.

492-493, 2012.

[27] Ali Rahimi and Ben Recht, “Random Feature for Large-Scale-Kernel Machines”. Advances in Neural

Information Processing Systems, 2017.

[28] Williams, C. K. I. and Seeger, M, “Using the Nyström Method to Speed Up Kernel Machines”. In T.

K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in Neural Information Processing Systems 13

(NIPS) (pp. 682-688), 2001.

https://doi.org/10.1007/s11063-021-10467-0

