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Abstract 

Nowadays, virtualization, containerization technology and computer development make it possible to build 

distributed systems with virtual nodes, offering considerable performance for the execution of distributed 

computations. However, building such infrastructure faces various challenges of distributed systems, including 

load balancing, fault tolerance and wise placement of distributed computations on compute nodes. In this paper, 

we focus on the efficient placement of distributed computations in a virtual distributed system with the aim of 

minimizing the makespan. Several approaches have been proposed to reduce the placement makespan , but the 

need of improvement  still remains. Consequently, in this work, we propose a new approach that minimizes the 

makespan of distributed computations on compute nodes by performing fine-grained intelligent placement. The 

results obtained during tests have shown a better placement of distributed computations on core nodes than 

existing approaches, regardless of the characteristics of the processes, cores, distributed computations and 

compute nodes. 
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1. Introduction 

With current computer performance and virtualization technologies, it is possible to increase the performance of 

distributed systems in performing distributed computations [1,2] using virtual machines and containers. 

Unfortunately, this does not overcome the various challenges, including task placement, load balancing and fault 

tolerance. Among these challenges, this article focuses on the placement of distributed computations in a virtual 

distributed system with the aim of minimizing makespan.  
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To achieve this, it is necessary to implement approaches for placing distributed computations on computing 

units in the distributed system in order to minimize the makespan. The proposed approach allows the placement 

of distributed computing processes on node cores, regardless of the characteristics of the processes, cores, 

distributed computations and nodes. This document is organized into four sections. The first two sections 

present a state of the art of existing approaches, generalities on distributed systems, distributed computing, 

virtualization and placement, focusing on the tools and techniques used. The third section is devoted to the 

proposal of our virtual infrastructure, which integrates the placement mechanisms of distributed computations. 

The paper ends with a conclusion and perspectives. 

2. Background 

2.1. Distributed System 

A distributed system can be defined as a set of autonomous computer entities that can communicate and 

exchange information with each other in order to solve a global problem. To solve this global problem, 

distributed systems have evolved over time, as have the different types of programming [3,4,5]. This began with 

single-tasking distributed systems, then supercomputers, then multitasking distributed systems, and finally the 

use of virtual machines and networked containers to solve complex and diverse problems that are distributed 

computations. To perform these computations, distributed systems need to have mechanisms for placing tasks 

on computing units. 

2.2. Virtualization 

In a datacenter, virtualization is symbolized by the use of virtual machines and/or containers as the execution 

environment. A virtualization tool enables several operating systems to run on the same physical machine or on 

the same distributed system. There are several examples of hypervisors [6,7,8], such as Qemu-KVM (Quick 

EMUlator/Kernel-based Virtual Machine) and Docker. Qemu-KVM is a type I hypervisor that is integrated into 

the Linux kernel and is easy to implement. It was designed from one branch of QEMU, which in turn integrates 

the source code of the other, so that the two are interdependent. Qemu-KVM is capable of executing machine 

code directly on the host processor to speed up emulation. Docker is a hypervisor for running computations in 

software containers. Docker enables the implementation of containers operating in isolation, via a high-level 

API. It relies instead on kernel functionality and uses resource isolation and distinct namespaces to isolate the 

operating system as it is perceived by the compute. 

2.3. Placement of tasks 

The authors of [9,10,13] define placement like an operation which consists of assigning elementary tasks to 

computing units. In a distributed system, placement consists of allocating the processes of one or more 

distributed computations to the processors of one or more computations nodes. The process of placement faces a 

number of challenges, including resource availability, dependency between tasks, and minimizing response time 

during communications. These different challenges make placement an NP-complete problem [11,12] that is 

widely treated in the literature. Thus, it is necessary to place computations on nodes taking into account a certain 
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number of criteria. In fact, several heuristics and algorithms have been developed in order to approach an 

optimal allocation in different problem cases. These algorithms can be divided into two main types: static 

placement and dynamic placement. 

2.3.1.  Static placement 

The aim of static placement is to reduce the execution time of an application by assigning tasks to the available 

processors (or machines). This allocation is calculated at compile time and requires knowledge of all the tasks, 

their precedence relationships and their communication costs. There are two use cases for this type of 

placement: 

 Case of independent distributed computations: In this case, it is sufficient to place the tasks of the 

computations according to the load on the resources. Several heuristics have been proposed in the 

literature, including MET (Minimum Execution Time), MCT (Minimum Completion Time), Min-Min, 

Max-Min and genetic algorithms. 

 Case of dependent distributed computations: In this case, the system must place tasks according to the 

resource load and the dependencies between tasks. The heuristics developed to deal with this include 

list heuristics, task grouping heuristics, task duplication heuristics and meta-heuristics. 

2.3.2. Dynamic placement 

To compensate for the lack of static placement algorithms, researchers have experimented with several types of 

dynamic placement. Since choosing the best node is more or less easy, most of the work focuses on optimizing 

communications between nodes, in particular to avoid network congestion. There are two types of dynamic 

placement: 

 Case of independent distributed computations: Several heuristics exist in this case, including the 

duplication heuristic, the WQR (Workqueue with Replication) heuristic and the approach of Bansal 

and his colleagues. 

 Case of dependent distributed computations: In this case, the objective approach of Maria Chtepen and 

his colleagues is to maximize the number of jobs processed in a particular time interval and the 

approach of Gomathi and his colleagues who present a task scheduling model based on the grouping 

of tasks and makes it possible to maximize the use of resources and minimize task processing times. 

3. Related Works 

Several works in the literature have attempted to place tasks on compute nodes using several approaches. 

Firstly, the classic Min-Min approach, found in several works [14,15], which consists of placing tasks according 

to the minimum execution time. However, this approach considers tasks not placed at each decision and is not 

suitable for task balancing. And also, the classic Max-Min approach which, on the contrary, consists of placing 

tasks according to the maximum execution time and which has the disadvantage of increasing the overall 

execution time [16,15]. Singh Lalla and his colleagues [15] proposed in 2015 an approach called Improved-Min-
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Min which aims to improve the classical Min-Min approach by improving the load balance and Makespan. In 

2017, Konjaang James and his colleagues [17] proposed an approach called Improved-Max-Min which consists 

of improving the classic Max-Min by minimizing the overall execution time. In 2023, Sallar Sallam Murad and 

his colleagues [18] proposed an approach called Improved-Min-Min, the aim of which is to overcome the 

shortcomings of Min-Min by improving the Makespan and optimizing the use of resources, regardless of the 

size of the infrastructure. 

However, these approaches work on the principle of placing a task on a node, whether or not the node is multi-

core or whether or not the task is a distributed computation. The consequence of these approaches is its 

incapacity to take full advantage of the capabilities offered by the compute nodes, its incapacity to optimize the 

use of resources and therefore gives a more considerable Makespan. Given these limitations, the challenge of 

our approach is to minimize the Makespan by improving the use of resources. This improvement consists of 

placing each process of each task on a core of a compute node that takes into account the performance of each 

node core and the loads of each process of each task. This involves exploring the loads of the tasks, the loads of 

their processes, the performance of the nodes and the performance of their different cores, with the aim of 

making a more targeted and more powerful placement. 

4. Structure of the proposed virtual architecture, Problem description and Methodology 

4.1. Structure of the proposed virtual architecture 

As part of this work, the robust distributed computing infrastructure is made up of mainly of physical machines 

(PM), virtual machines (VM) and containers (C) located in the virtual machines and forming a virtual network. 

This infrastructure implements the proposed distributed computing placement approach in order to make the 

right choice in allocating processors to distributed computing processes with the aim of minimizing the 

Makespan. 

4.2. Problem description 

4.2.1.  Problem statement 

In general, placement is used to assign computation processes to the processors of the compute nodes. In this 

work, it was useful to carry out a placement that minimized the Makespan while taking into account the state of 

the nodes, the dynamism of the infrastructure and the flow of calculations. 

4.2.2.   Problem formulation 

Consider the following notations: 

n: the number of distributed computations; 

m: the number of physical nodes which virtual nodes will be assigned tasks in order to minimize the Makespan; 

T = { T1, T2, .  .  . , Tn }: a set of n distributed computations; 
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𝑛𝑖 : the number processes of task 𝑇𝑖 , with = 1. . n; 

δ = { δ1, δ2, .  .  . , δ𝑛 }: a set, where δ𝑖=1 if distributed computation T𝑖 is selected, or 0 otherwise; 

Pij : the process j of task 𝑇𝑖 ; 

I(Pij): the function that gives the number of instructions of process j:1.. 𝑛𝑖  of distributed computation T𝑖; 

M = { M1, M2, .  .  . , Mm }: a set of m physical nodes; 

mk: the number of virtual nodes of  Mk, k = 1..m;  

V = { Vlr, l = 1. . m, 𝑟 = 1. . mk }: a set of virtual nodes where Vlr is a virtual node r of physical node Ml; 

Clr : the cores number of virtual node Vlr. 

Flrs : the frequency of core s of virtual node Vlr, s=1..Clr. 

NB: with the use of containers, you can have several virtual nodes on the same physical machine which have 

different core frequencies from one virtual node to another. We have a very fine-grained granulation of 

processing units. For Example, we can have a machine that has 5 GHz of frequency where tree virtual nodes 

(Docker containers) can be tunes with the frequencies 2 GHz, 1 GHz and 1 GHz respectively. 

Let θ be the function that determines if a process is selected and affected or not. θ is defined as follow: 

θ (i, j, l, r, s) = { 
1 if process j of  Ti is affected to core s of virtual node r of physical node l
0  else                                                                                                                                

  

The execution time of process Pij  of Ti  on core s of virtual node  Vlr  is given by the formula:   
I(Pij)

Flrs
 

According to the above notation, the objective function is given by: 

 

 

Figure 8 

Subject to: 

1. For all Ti   computation: 

(a) ni > 0 

Minimize : Z(T)= {  
max (⋃ δ𝑖𝑚𝑎𝑥 (⋃ 𝜃(𝑖, 𝑗, 𝑙, 𝑟, 𝑠)  

I(Pij)

Flrs
))                                                                         

with    i = 1. . n    j = 1. . ni        𝑙 = 1. . 𝑚    𝑟 = 1. . mk     𝑠 = 1. . Clr
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(b) and for any process Pij of Ti, I(Pij) > 0 

2. For any virtual node Vlr of any physical node l: 

(a) Clr > 0 

(b) and for any core or processor s of  Vlr , Flrs > 0 

3. The number of processes affected to cores of each virtual node Vlr should not exceed the number of 

cores of that node: 

∑ δ𝑖 ∑ ∑ 𝜃(𝑖, 𝑗, 𝑙, 𝑟, 𝑠)

Clr

𝑠=1

ni

𝑗=1

𝑛

𝑖=1

≤ Clr  𝑤ℎ𝑒𝑟𝑒 𝑙 𝑎𝑛𝑑 𝑟 𝑎𝑟𝑒 𝑓𝑖𝑥𝑒𝑑 

4. A computation Ti is affected if all its processes are affected: 

∑ ∑ ∑ ∑ 𝜃(𝑖, 𝑗, 𝑙, 𝑟, 𝑠)

Clr

𝑟=1

mk

𝑙=1

𝑚

𝑘=1

ni

𝑗=1

= ni                                               

4.3. Methodology 

To do the placement of the distributed computations, The processes in general is as follows: 

1. Find and determine a solution, which is in fact a group of distributed computations that can be assign 

and executed  

2. If the solution is empty, go to step 4, otherwise improve the solution to minimize Makespan. 

3. Run the solution found 

4. Check whether there are still any unassigned computations; if there are any unassigned computations, 

go to step 1; otherwise, exit as all computations are assigned and executed.Those different steps are 

summarized in the diagram given in Figure2 

 

Figure 9: Overview of the proposed placement approach 
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More specifically, the following section presents each part of the placement strategy proposed below. 

4.3.1. Research for a solution for assignment and execution 

In the search for a solution which is in fact a group of distributed calculations which can be assigned and 

executed taking into account the objective and the associated constraints, it has been judicious to divide this part 

into several sub-parts which are: 

 Classification of distributed computations and virtual nodes; 

 Assignment of distributed computations to computation nodes. 

Classification of distributed computations and virtual nodes 

The classification of distributed computations and virtual nodes enables nodes and computations to be organized 

in order to facilitate the choice of distributed computations and computation nodes during the distributed 

computation placement phase. To do this, follow these steps: 

 Calculate the order order(Ti, I) and order(Ti, n) which are the orders of the computation Ti  respectively 

according to the average of the number of instructions of all processes of each computation of 

List_Calc and also of their number of processes 

 calculate the order order(Vlr, F) and order(Vlr ,C) are the orders of the virtual node Vlr respectively as a 

function of the average frequency of all the frequencies of each virtual node and also their number of 

cores 

 order distributed computations and virtual nodes according to these orders 

Here’s the algorithms (Algorithm 1 and Algorithm 2) that explain it: 

 

Figure 10 
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Figure 11 

Assignment of distributed computations to compute nodes 

To assign the classified distributed computations to the ordered nodes, assign each process of each distributed 

computation to a core of the virtual nodes while respecting the various constraints given. Here is an algorithm 

that does just that: 

 

Figure 12 
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4.3.2. Improving the solution obtained and launching the execution of the assigned computations 

As part of Improving the solution obtained and launching the execution of the assigned computations, it has the 

algorithm 4 and algorithm 5 below: 

 

 

 

 

 

Figure 13 

 

 

 

 

 

 

 

Figure 14 

The improved solution obtained consists of swapping the distributed computation processes assigned to the 

cores of the virtual nodes in order to reduce the Makespan while respecting the associated constraints. The 

algorithm that does this is algorithm 4. After the first enhancement, the following steps are carried out to enable 

all the distributed computations to be executed: 

 Start execution of affected computations 

 assign new computations after an affected computation has finished executing 

  improve the Makespan of these new computations 

 add these affected computations to the list of affected computations 

The algorithm that clarifies this is algorithm 5. In this algorithm:  

 

 



International Journal of Computer (IJC) - Volume 53, No  1, pp 80-96 

 

89 

 Order(Ti, I) and order(Ti, N) are the orders of the computation Ti respectiveaccording to to the average 

of the number of instructions of all processes of each computation of  List_Calc and also their number 

of processes; 

 Order(Vlr, F) and order(Vlr, C) are the orders of the virtual node Vlr  respectively as a function of the 

average of the frequency of all the frequencies of each virtual node and also of their number of cores 

4.4. Experimentations 

During the experimentation phase, the simulation are done by using different approaches on a varied set of 

nodes and virtual infrastructures and performed distributed computations with different characteristics. The 

approaches used are: 

 algorithm Min-Min[14,15] 

  algorithm Min-max[15,16]  

 algorithm Improved Min-min[15]  

 algorithm Optimized Max-min [17]  

 algorithm Optimized Min-Min [18]  

 Proposed approach 

These different approaches are tested in the following 07 scenarios: 

 scenario 1: small infrastructure and a distributed computation has exactly one process and a node has 

exactly one processor or core: With this scenario, the infrastructure is small, each distributed 

computation is executed by a single node and each node can only execute a single distributed 

computation; 

 scenario 2: small infrastructure and a distributed computation on several nodes: With this scenario, the 

infrastructure is small and each distributed computation requires several nodes for its execution; 

  scenario 3: small infrastructure and one node for several distributed computations: With this scenario, 

the infrastructure is small in terms of the number of compute nodes and each node has the capacity to 

execute several distributed computations; 

  scenario 4: large infrastructure and a distributed computation has exactly one process and a node has 

exactly one processor or core: With this scenario, the infrastructure is large, each distributed 

computation is executed by a single node and each node can only execute a single distributed 

computation; 

 scenario 5: large infrastructure and a distributed computation on several nodes: With this scenario the 

infrastructure is large and each distributed computation requires several nodes for its execution. 

 scenario 6: large infrastructure and one node for several distributed computations: With this scenario, 

the infrastructure is large in terms of the number of computation nodes and each node has the capacity 

to run several distributed computations.  

  scenario 7: large infrastructure, one node for several distributed computations and one distributed 

computation on several nodes 
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Here is a table showing the characteristics of the distributed computations and virtual nodes according to these 

scenarios: 

Table 1: Characteristeristics of nodes and comutation distributed according to the scenarios 

 

4.5. Presentation and analysis of results obtained 

Presentation of the results obtained for the different scenarios 

The figures below show the Average Makespan obtained for 10 instances of scenarios 1, 2, 3, 4 , 5,6 et 7 

described above. 

 

Figure 1: Results of Average Makespan for 10 instances of scenario 1 
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Figure 2: Results of Average Makespan for 10 instances of scenario 2 

 

Figure 3: Results of Average Makespan for 10 instances of scenario 3 

 

Figure 4: Results of Average Makespan for 10 instances of scenario 4 
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Figure 5: Results of Average Makespan for 10 instances of scenario 5 

 

Figure 6: Results of Average Makespan for 10 instances of scenario 5 

 

Figure 7: Results of Average Makespan for 10 instances of scenario 7 
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Analysis of the results obtained for the different scenarios 

An analysis of the Makespan results for the different scenarios reveals the following: 

1. In scenarios 1, 2 and 3, the Makespan increases significantly as a function of the number of distributed 

computations (5, 50, 100, 250, 400, 500) for the other approaches (this increase is greater for the 

Improved Min-Min algorithm) but for our approach this Makespan increases slowly and comparably in 

scenario 1 and almost zero in scenario 2. 

2. In scenarios 4, 5, 6 and 7, the different Makespan values are comparable and sometimes almost stable 

for each approach, whatever the number of computations distributed. This quasi-stability in execution 

time is more visible for our approach, especially in scenarios 4, 5 and 7. 

3. Although each distributed computation has a single process and each node has a single core in 

scenarios 1 and 4, our approach still achieves better makespan than the other approaches. 

4. In all the different scenarios, it also emerges that our approach brings a considerable and unequal gain 

in Makespan whatever the number and characteristics of the distributed computations and whatever the 

number and characteristics of the computation nodes. 

5. The effectiveness of our approach stems from its ability to make better investments that minimize 

Makespan and optimize the use of resources compared with other approaches. 

4.6. Discussions 

Approaches presented in the literature such as Min-Min, Max-Min, Improved Min-Min, Optimized Max-Min 

and Optimized Min-Min have shown their limitations in minimizing. 

In scenario 1, the approach proposed in this paper has the lowest Makespan of at most 105 compared to the 

other approaches throughout the increase in the number of distributed computations, followed by the Max-Min, 

Min-Min, optimised Max-Min and optimised Min-Min approaches. The improved Min-Min approach has by far 

the highest Makespan in this scenario. Furthermore, with the proposed approach, the Makespan evolves very 

slowly with the increase in distributed computation compared to the other approaches in this scenario. This 

makes this approach an efficient and fine-tuned resource-use approach for placing distributed computations in 

an environment with fewer resources and more workloads. 

In scenario 2, we reach almost the same conclusion as in scenario 1. It emerges that, compared with other 

approaches, the proposed approach manages to achieve economical, fine-grained and efficient placement despite 

the fact that the number of processes per distributed calculation may be well above the number of cores per 

calculation node and that the calculation environment does not have enough resources. This leads to the 

conclusion that this approach is economical in managing resource consumption when placed in a distributed 

system with few resources. 

In scenario 3, the approach proposed in this paper has the lowest and quasi-stable Makespan of less than 103  

compared to the other approaches throughout the increase in the number of distributed computations. The other 

approaches apart from improved Min-min have Makespans varying from 103  to 1013  as the number of 
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distributed computations increases. The improved Min-min approach has by far the highest Makespan in this 

scenario. Thus, the proposed approach is able to exploit the sufficiently large number of cores available per 

compute node compared to the number of processes per distributed compute to perform targeted and efficient 

placement on a distributed system with few compute nodes. 

In scenario 4, the approach proposed in this paper has the lowest Makespan and is quasi-stable around 102 

compared with the other approaches throughout the increase in the number of distributed calculations. This is 

followed by the Max-min approach whose Makespan varies from 104  to 106 . The other approaches have 

Makespans in the range [105, 109]. Thus, the proposed approach is able to exploit the sufficiently large number 

of cores per compute node compared to the number of processes per distributed computation to perform targeted 

and efficient placement on a distributed system with few compute nodes. Therefore, in a compute environment 

of manageable size and with a number of distributed compute processes equivalent to the number of cores per 

node, the proposed approach makes more efficient use of resources to perform placement compared to existing 

approaches. 

In scenario 5, the approach proposed in this paper has the Makespan in the interval [102, 106 [ while for the 

other approaches it is in the interval [ 105 , 109 ] throughout the evolution of the number of distributed 

computations. This shows that this approach is much more efficient in the use of resources during placement. 

Therefore, in a large-scale cluster environment and with the number of processes per distributed computation 

much larger than the number of cores per node, the proposed approach makes more efficient use of resources for 

placement than existing approaches when there are more resources. 

In scenario 6, the approach proposed in this paper has the Makespan in the interval [102, 106 [ while for the 

other approaches it is in the interval [ 105 , 1010  [ throughout the increase in the number of distributed 

computations. This shows that this approach is largely more efficient in the use of resources during placement. 

As a result, in a distributed environment of manageable size and with the number of processes per distributed 

computation much larger than the number of cores per node, the proposed approach makes more efficient use of 

resources to perform placement compared to existing approaches. 

In scenario 7, the approach proposed in this paper has the lowest and almost stable Makespan around 102 

compared to the other approaches throughout the increase of the number of distributed computations while the 

Makespan of the other approaches are in the range [105, 109 [. This shows that this approach is much more 

efficient in the use of resources during placement. As a result, in a cluster environment of manageable size and 

with the number of processes per distributed computation as large as the number of cores per node, the proposed 

approach makes more efficient use of resources for placement than existing approaches. 

It appears that the proposed approach presented in this paper adapts better to variations in the characteristics and 

number of distributed computations and also to variations in the characteristics and number of computation 

nodes in the placement of distributed computations. Our approach optimizes better the placement of each 

distributed computation by allocating appropriate computation units to its processes in order to minimize the 

Makespan. This makes our approach a serious and interesting one for the placement of distributed computations 
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on compute nodes. 

By comparing the approach proposed in this work with several other existing approaches to the placement of 

distributed computations, it emerges that this proposed approach has the particularity of placing distributed 

computations in several situations while minimizing the Makespan. Therefore, with this approach, our 

infrastructure can perform a placement of distributed computations while optimizing the use of resources and, 

above all, minimizing the Makespan. 

5. Conclusion and Perspectives 

The study in which we are involved aims to place distributed computations in a virtual environment. The main 

interest is to know how to place distributed computations in order to minimize the Makespan. To achieve this 

objective, we first carried out a study of the state of the art in distributed computation and systems, 

virtualization, placement, existing approaches and finally proposed a virtual infrastructure that integrates 

placement mechanisms that minimize the Makespan of distributed computation and improve resource 

utilization. This minimization of Makespan is done by using an approach that explores the loads of the tasks, the 

loads of their processes, the performance of the nodes and the performance of their different cores in order to 

place each process of each task on a core of a compute node that takes into account the performance of each 

node core and the loads of each process of each task. The experiments carried out gave very encouraging results. 

And after every simulation against a distributed system and distributed calculations, we can directly use the 

structure obtained to make a placement on this system in real time. Extending this study to connected objects is 

also a major challenge. 
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