International Journal of Computer (IJC)
ISSN 2307-4523 (Print & Online)

https://ijcjournal.org/index.php/InternationalJournalOfComputer/index

Implementation of machine learning in Android

Applications

Vladislav Terekhov”

Mobile Applications Developer, Mobilesource Corpl,Boca Raton, Florida, United States
Abstract

The introduction of machine learning into Android applications based on the Java platform allows you to
significantly expand the functionality of mobile applications, improving the user experience and increasing the
efficiency of data processing. The use of various libraries, such as TensorFlow Lite and ML Kit, gives
developers flexible tools for integrating machine learning models. This allows you to implement image
recognition, text analysis, and user segmentation functions, providing a more personalized service. However,
developers face challenges related to the limitations of computing resources of mobile devices, which require
optimization of models to work in conditions of low power consumption and limited RAM. Nevertheless,
machine learning on Android shows high development prospects, contributing to the creation of more intelligent
and adaptive mobile solutions.

Keywords: machine learning; Android applications; Java; TensorFlow Lite; ML Kit; model optimization;

mobile devices.
1. Introduction

Machine learning is one of the key areas of modern technology, finding broad applications in various fields such
as medicine, finance, transportation, and marketing. In recent years, particular interest has emerged in the
integration of machine learning algorithms into mobile applications, including those on the Android platform,
which opens new possibilities for process automation, improved user interaction, and personalized services.
Java, as one of the most popular programming languages for Android application development, plays a crucial
role in integrating machine learning into mobile solutions, providing high performance and stability.The
relevance of the topic is driven by the rapid growth of the mobile sector and the increasing demand for
intelligent applications capable of processing large volumes of data and adapting to individual user needs. The
application of machine learning on mobile devices allows for improved service quality, more accurate
predictions, and recommendations, which are particularly important in fields such as healthcare and financial

services.

Received: 7/8/2024
Accepted: 9/8/2024
Published: 9/18/2024

* Corresponding author.

72



International Journal of Computer (1JC) - Volume 53, No 1, pp 72-79

However, mobile devices have limited computational resources, posing challenges for developers to optimize
machine learning algorithms and models to operate under conditions of low energy consumption and limited
memory.The purpose of this work is to explore the possibilities and features of implementing machine learning
in Android applications on the Java platform, as well as to analyze existing tools and libraries for optimizing

machine learning models in the constrained resource environment of mobile devices.

2. General Theoretical Foundations of Machine Learning and Its Applications in Android Applications

on the Java Platform

Machine learning (ML) is a branch of artificial intelligence (Al) focused on creating algorithms and models that
can learn from data and improve their outcomes without explicit programming at each step. The key feature of
machine learning is the ability of systems to automatically adapt to changes and analyze large volumes of data

to identify patterns. The main types of learning include:

Supervised Learning: In this type of learning, the model is trained based on pre-labeled data, where the target

value for each example is known. This group includes tasks such as classification and regression.

Unsupervised Learning: In this approach, the model works with data that does not have predefined labels or
known target variables. The main goal is to discover hidden patterns and structures. Common tasks include

clustering and dimensionality reduction.

Reinforcement Learning: This method is based on an agent interacting with the environment, where it receives
rewards for its actions. The agent's task is to minimize errors when receiving rewards and improve its behavior

strategy.

Semi-supervised Learning: This approach combines elements of both supervised and unsupervised learning,
using a small amount of labeled data and a large amount of unlabeled data. This method is especially useful

when obtaining labeled data is costly or difficult [1].

Machine learning methods include various algorithms such as linear regression, decision trees, neural networks,

and others. Each of these approaches has unique characteristics and can be effectively applied in different fields.

To begin working with machine learning in a Java environment, the installation of the Java Development Kit
(JDK) and proper configuration of the JAVA HOME environment variable are required. After that, it is
necessary to choose an integrated development environment (IDE), such as IntelliJ IDEA or Eclipse, which

provide a wide range of tools for Java development.

One of the key components of machine learning is the use of specialized libraries. Among the popular libraries
are Weka, which provides various algorithms for data analysis, and Deeplearning4j (DL4J), which supports
deep neural network training. Additionally, tools such as Apache Spark MLIlib and MOA are often used for

streaming data processing and working with large datasets [2].

73



International Journal of Computer (1JC) - Volume 53, No 1, pp 72-79

One approach to using machine learning in Java is integrating models into applications. Libraries like
TensorFlow enable the use of pre-trained models to implement functions such as image recognition, text

processing, or data analysis in Java applications.

Moreover, machine learning helps automate processes and improve software performance. For example,
classification algorithms can be used for automatic data categorization, and clustering for segmenting users by

interests and preferences.

The use of machine learning makes Java development more flexible and powerful, expanding opportunities for

creating intelligent solutions capable of adapting to changes and making optimal decisions based on data [3,4].

3. Selecting the Appropriate Library for Machine Learning in Android

Systems based on machine learning algorithms continue to evolve rapidly, requiring developers to pay special
attention to ensuring their security and reliability. This is especially relevant for solutions that operate in real-

time and are used in critical applications.

The specifics of applying machine learning on the Android platform are shaped by several limitations:

- Limited resources: Android-based devices do not possess the computational power of servers or cloud
platforms, which imposes the need for optimizing machine learning models to function successfully under

conditions of limited memory and low power consumption.

- Model optimization requirements: For effective operation of models on Android, they need to be adapted to

the resource-intensive conditions of mobile devices. This may include quantization or model size reduction.

- Integration with Android SDK: Developers can use the Android SDK to create applications with integrated

machine learning, providing access to device functionalities such as the camera, microphone, and geolocation.

- Security and privacy: Data must be securely protected, and privacy concerns become key when developing

machine learning-based solutions.

- On-device training tools: With the ability to locally train models on mobile devices, the need for cloud

computing is reduced, and data remains securely on the device.

Table 1 details the tools available for developing applications using machine learning on the Android platform.

74



International Journal of Computer (1JC) - Volume 53, No 1, pp 72-79

Table 1: Tools for developing applications using machine learning on the Android platform [5]

Tool

Description

Key Features

TensorFlow Lite

An optimized library from Google designed to implement
machine learning models on mobile devices. Focuses on

improving performance and reducing power consumption.

High low

consumption,

performance, power

support for mobile

devices.

A toolkit from Google for integrating machine learning into

Android applications. Supports image, object, and text

Easy integration, wide range of features

(image, object, text recognition),

ML Kit recognition, among other functions. support for pre-trained models.
A framework from Apple for working with machine
learning, designed for both iOS and Android devices.|Support for various models, cross-
Supports various model types but has limitations for on-[platform, limitations for on-device
Core ML device data input and training. training and data input.

PyTorch Mobile

A flexible platform from Facebook for deploying machine
learning models on mobile devices. Allows for quick model

deployment and optimization for Android.

Flexibility, fast deployment, model
optimization for mobile devices,
support for complex model

architectures.

Caffe2

A tool from Facebook for deploying machine learning
models on mobile devices. Known for high performance and

scalability.

High performance, scalability, suitable|
for creating scalable machine learning

applications.

Each of these tools has its own features that make them suitable for implementing machine learning tasks on
mobile devices. During development, it is important to consider the limitations in computational resources,
energy consumption, and performance of Android devices, which necessitates model optimization and the use of

specialized solutions to reduce the load on hardware resources [5].

Additionally, Java supports a humber of frameworks for working with deep learning, such as Deeplearning4j
and DL4J. These tools are designed for developing and training neural networks to solve tasks such as image
recognition or data classification. The use of these technologies enables the creation of complex and highly

efficient deep learning models, significantly expanding the ability to work with large datasets.

Thus, Java developers have access to a wide range of machine learning tools, allowing them to tackle complex
tasks and achieve high results in various fields. Below are several key libraries used for machine learning in

Java:

- Weka: A well-known library with a wide range of algorithms for classification, clustering, and regression

tasks. It also features a graphical interface and tools for data preprocessing.

- DL4J: An open-source deep learning library that facilitates the creation and training of neural networks in

Java. It supports various types of neural networks, making it a versatile tool for deep learning.

75



International Journal of Computer (1JC) - Volume 53, No 1, pp 72-79

- TensorFlow Java: A version of Google's popular TensorFlow library for Java. It provides an API for

developing and training machine learning models in Java.

- Apache Mahout: This library includes algorithms for working with big data and supports tasks such as
recommendation systems, classification, and clustering. It operates in distributed environments such as Apache

Hadoop.

- Deeplearning4j: A library with capabilities for both desktop and server applications, offering implementations

of various neural network models, including convolutional and recurrent neural networks.

Each of these libraries has its own unique features and allows Java developers to effectively solve machine

learning tasks. The choice of a specific tool depends on the project's specifics and its requirements [6].

4. Integration of a Machine Learning Model into an Android Application

The integration of machine learning into mobile application development offers significant advantages by
enhancing user interaction and expanding application functionality. This technology enables the implementation
of important features such as accurate recommendations based on geolocation or timely detection of medical
conditions. Modern users seek a highly personalized experience, and simply creating a quality application is no
longer sufficient. Integrating machine learning technologies helps retain the target audience's attention by

adapting the application's functionality to individual needs [7].

To begin, add the TensorFlow Lite dependency in the build.gradle file;

implementation 'org.tensorflow:tensorflow-lite:2.9.0"

Next, create a Java class for making predictions:

package com.example.mlapp;

import android.content.res.fssetFileDescriptor;
import android.graphics.Bitmap;

impeort android.cs.Bundle;

impeort androidx.appcompat.app.fippCompathotivity;
impeort ocrg.tenscrflow.lite.Interpreter;

impeort java.ioc.FileInputStream;
import java.ioc.IOException;

impeort java.nioc.ByteBuffer;

import java.nio.ByteOrder;

impeort java.nio.channels.FileChannel;

puklic class Mainfictivity extends AppCompathctivity |

Figurel

76



International Journal of Computer (1JC) - Volume 53, No 1, pp 72-79

private Interpreter tflite;

@0wverride

protected woid onCreate (Bundle savedInstanceState) {
super.cnCreate (savedInstanceState]) ;
setContentView (R.layout.activity main);

try {

// Load the model

tflite = new Interpreter(lcadMcdelFile(});
} catch (IOExcepticn =) {

e.printStackTrace();
}

// Example of image processing
Bitmap bitmap = getTestBitmap();
fleat[] result = runInference (bitmap);

ff Process the result
System.out.println ("Predicticon result: " + result[0]);

I

/7 Method to load the model file
private ByteBuffer lcadMcdelFile() throws ICException
BzzsetFileDeszscriptor fileDescriptocr =
this.gethssets() .openFfd{"model .t£f1ite™);
FileInputStream inputStream = new
FileInputStream(fileDescriptor.getFileDescriptor());
FileChannel fileChannel = inputStream.getChannel (};
long startOffset = fileDescriptor.get3tartOffset();
long declaredLength = fileDescriptor.getDeclaredLengthi);
ByteBuffer buffer =
fileChannel.map(FileChannel.MapMode.READ ONLY, startCffset,
declaredLength) ;
buffer.order (ByteQrder.nativelrder());
return buffer;

}

/{ Method to make predictions
private flecat[] runInference (Bitmap bitmap) {
BytePuffer inputBuffer =
convertBitmapTcByteBuffer (bitmap) ;
float[] cutput = new fleoat[l]; // Zssume the meodel
returns cne value
tflite.run(inputBuffer, cutput);
return output;

}

// Example method to convert an image to & format suitable
for the model

Figure 2

77




International Journal of Computer (1JC) - Volume 53, No 1, pp 72-79

private ByteBuffer convertBitmapTcByteBuffer (Bitmap bitmap) {
int inputSize = 224; // Input image 3ize for the model
BvteBuffer byvteBuffer = ByvteBuffer.allccateDirect (4 *
inputSize * inputSize * 3): f/ Buffer size: 224x224x3 (RGE)
bvteBuffer.order (Bytelrder.nativelrder () ) :

int[] pixels = new int[inputSize * inputSize];
bitmap.getPixels (pixel=s, 0, bitmap.getWidcth({), 0, 0O,
bitmap.getWidth(), bitmap.getHeight()):

for (int pixel : pixels) {
int r = (pixel >> 16) & 0OXFE;
int g = (pixel >> 8) & 0xFF;

int b = pixel & 0XFF;

byteBuffer.putFloatix / 255.0f) :
byteBuffer.putFloat (g / Z55.0f) ;
byvteBuffer.putFlocat (b / 255.0F) :
H
return byteBuffer;
I

ff Emample of obtaining & test image
private Bitmap getTestBitmap () {
Sf ¥our code to ocbtain a test Bitmap image
return Bitmap.createBitmap (224, 224,
Bitmap.Config.ARGE 88388) ;
¥

AOverride

protected void onDestrovi()
tflite.close() ;
super.onbDestrov()

Figure 3

Thus, machine learning not only expands the functionality of mobile applications but also provides new

opportunities for optimization, improving user experience and enhancing performance.

5. Conclusion

Machine learning on the Android platform, implemented using Java, offers developers significant opportunities
to enhance the functionality of applications. Despite the existing limitations of mobile devices, such as limited
computational resources and power consumption, adapting and optimizing models allows for the integration of
intelligent solutions into mobile applications. The use of libraries such as TensorFlow Lite and ML Kit greatly
simplifies the development process, enabling the use of pre-trained models and performing local data processing
on devices. In the future, the advancement of machine learning methods on Android will open new horizons for

creating high-performance and personalized applications focused on users.

References

[1]. Cherevko N. A., Belov V. S. Automation of Android application testing using the computer learning

78



[2].

[3].

[4].

[5].

[6].

[7]1.

International Journal of Computer (1JC) - Volume 53, No 1, pp 72-79

method //Scientific review. Technical sciences. - 2022. — No. 2. —p. 21.

Sultan K. Z., Anu V., Chong T. Y. Using software metrics to predict vulnerable classes and methods in
Java projects: an approach to machine learning //Journal of Software: Evolution and Processes. — 2021.
—vol. 33. — No. 3. — p. €2303.

Petrov I. O. What to expect from Java in the future? //Reforming and development of national and
technical science. - 2023. — pp. 66-70.

Szabo M. Machine learning on Android using oracle tribuo, smile and weka //Proceedings of the 1st
Conference on Information Technology and Data Science. — 2021. pp.176-186.

Novikov A.V. System implementation of software for machine learning on the Android platform
/IUniversum: technical sciences. — 2024. — T. 1. — Ne. 5 (122). — Pp. 49-52.

Chaika A.M. Exploring the possibilities of machine learning on the Java platform //Innovative potential
of science development in the modern world: technologies, innovations, achievements. - 2023. — pp.
322-328.

Singh A. K., Goyal N. Understanding and eliminating threats from hybrid Android applications using
machine learning //IEEE International Conference on Big Data (Big Data) 2020. — IEEE, 2020. — pp. 1-
9.

79



