International Journal of Computer (1JC)
ISSN 2307-4523 (Print & Online)

https://ijcjournal.org/index.php/InternationalJournalOfComputer/index

Methods of Automated CSS Refactoring for Web

Application Performance Optimization

Evgeny Klimenchenko*

Software Engineer, JPMorgan, London, UK

Email: me@evgeny.dev

Abstract

This paper investigates the effectiveness of automated CSS refactoring techniques in optimizing web application
performance. Focusing on two key methods - removal of unused CSS and implementation of scoped CSS - the
study conducts experiments on both dynamic and static web pages. Performance metrics such as First
Contentful Paint (FCP) and Largest Contentful Paint (LCP) are used to measure the impact of these techniques.
The results reveal that removing unused CSS consistently improves performance, with a 4.77% decrease in
loading time for dynamic pages and a 3.58% decrease for static pages. Surprisingly, the implementation of
scoped CSS led to slight performance degradations in the test environment. This research provides insights into
the relative effectiveness of these automated CSS optimization strategies and highlights the need for context-
specific testing in web development practices. The findings contribute to the ongoing discussion on best

practices for CSS performance optimization in modern web applications.
Keywords: CSS Optimization; Web Performance; Automated Refactoring.
1. Introduction

In this paper, we will look at Cascading Style Sheets (CSS). CSS is important for controlling the visual
presentation of web pages, playing a major role in modern web development. CSS allows developers to design
complex layouts and deliver a seamless user experience. However, as web applications grow, so does the
complexity and size of their CSS codebase. This often leads to inefficient CSS, so it directly affects the
performance of web pages by increasing load times and rendering delays. If CSS is poorly optimized it can lead
to what is known as "render-blocking,” where a webpage's content cannot be displayed until the CSS is fully
loaded and CSS Object Model (CSSOM) is constructed [1].

Received: 7/27/2024
Accepted: 9/27/2024
Published: 10/7/2024

* Corresponding author.

189



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

Therefore, CSS optimization becomes critical for improving both user experience and search engine
rankings.Some studies have shown that an increase in a web page’s load time from 1 to 10 seconds correlates
with a 123% increase in bounce rates. This might prove the importance of performance optimization for user
retention that leads to business success [2].To bring more clarity we need to understand what it means to
refactor CSS. Refactoring CSS means cleaning up and optimizing the code to make it more efficient without
altering its external behavior. In other words all the predefined CSS functionality should stay the same after we
refactor it for performance. In large-scale projects, manual CSS refactoring is labor-intensive, time-consuming,
and error-prone. Automated CSS refactoring approaches enable developers to incorporate refactoring into their
development pipelines, ensuring more efficient enforcement of CSS best practices across teams. There are many
different methods to make your CSS more performant such as Modular CSS (breaking CSS into small/reusable
components), use of utility classes (creating small, single-purpose utility classes for common styling needs, e.g.
popular library — Tailwind[3]), avoiding over-specificity, removing of unused classes etc. However, with rapidly
growing CSS codebase developers would want to look towards automating these optimizations for the sake of
time saving. The objective of this paper is to present automated CSS refactoring techniques and assess their
impact on performance metrics. This study aims to show which optimizations are more critical than others.

The motivation behind this research is to explore and document the most effective methods for automatic CSS
performance optimization, particularly in a real-world context where the impact of automated tools remains
underexplored. In this paper I will use evaluation techniques that will measure load times, file size reduction,
and rendering efficiency. Additionally, 1 will investigate how these tools can be integrated into development
workflows for long-term scalability and maintainability. This research aims to enhance understanding of the
ways in which automated CSS refactoring can improve both user experience and developer efficiency. This will

also improve my understanding of the topic as | have a great interest in the modern web development.

This paper begins with a literature review on the role of CSS in web performance. Next | will present analysis of
modern tools and methodologies for CSS refactoring. | will conduct an experiment to measure the performance
improvements brought by automated refactoring tools. At the end | will discuss the results to highlight the

strengths, limitations, and future potential of these technologies.

2. Literature Review
2.1. Introduction to CSS Performance Issues

2.1.1.0verview of CSS's Role in Web Performance

There are different ways that CSS can impact the performance of the application. | will go over each of those.
First is the file size. When you have a non-modular CSS it can grow into a huge file and when a user tries to
open a page this file needs to be loaded first, before user can see anything. As | discussed earlier CSS needs to
load and then build CSSOM in order to show anything on the page and the size of the CSS file will affect that.
Second is specificity. Specificity in CSS is the calculation of the priority of CSS rules, the bigger the specificity
the longer it will take for the CSS engine to make all the calculations [4]. The last one is rendering delays. This
happens when the browser tries to apply all the CSS styles on the page. This is often caused by inefficient styles

that force the browser to repaint the layout multiple times before content can be shown.

190



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

In modern web development all of these issues can be addressed by using different tools and techniques.
Developers are moving towards modular CSS techniques, where CSS is split into smaller, reusable components.
This helps to reduce the file sizes and improves maintainability of the CSS codebase. Also, by using utility first
CSS frameworks, such as Tailwind CSS [3], we can use small, single-purpose classes, helping reduce specificity
and avoid deep nesting. These strategies help optimize performance by reducing the overall complexity of the

CSS file and ensuring faster rendering times.

In conclusion, CSS performance is affected by file size, specificity, and rendering delays. Optimizing these
factors improves load times and enhances the user experience. By understanding how CSS impacts
performance, developers can make informed choices to create efficient, scalable, and maintainable stylesheets

that are less prone to the issues mentioned above.

The key studies that go further about CSS performance issues:

e Improving Web Performance by Optimizing Cascading Style Sheets (CSS): Literature Review and
Empirical Findings [5] - The article provides an overview of CSS optimization techniques. However, it
does not provide good information about different automatic CSS performance techniques.

e Study: Web Users Prefer Speed Over Customization [6] - A well-designed study demonstrates that the
speed of the user interface is the most crucial factor among other elements, such as adaptive behaviour
and content density.

e Optimizing CSS for performance Chapter 10 of AdvancED CSS book by Joseph R. Lewis and Meitar
Moscovitz [7] - The book explains CSS performance issues and how to fix them. This book is a bit old,

but It is still useful even though technology is always changing.

While several studies, such as those by Kuparinen (2023) [5], have explored the optimization of CSS
performance, few have delved into automated methods. Kuparinen's work emphasizes manual optimization
techniques, which, while effective, are labor-intensive and prone to error, especially in large codebases. This
gap highlights the need for more research on automated solutions, such as the ones explored in this paper.
Moreover, the work of Lewis and Moscovitz (2009) [7] on CSS performance, though foundational, does not
account for advancements in tooling like PurgeCSS or modern utility-first frameworks like Tailwind CSS. This
paper aims to extend these earlier findings by focusing on automation, addressing a critical need in modern web

development workflows where scalability and maintainability are key concerns.

2.1.2. Key Metrics Affected by CSS

In the context of web performance, we are interested in certain metrics that will help us in measuring and
comparing our automated techniques. The following key metrics are commonly used to measure the impact of

CSS on the overall performance of a website:

e First Contentful Paint (FCP)

FCP measures how long it takes for the first piece of content to be rendered on the screen. This content could

191



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

be text, an image, or a non-white background. CSS affects FCP because the browser must fully load and apply
CSS before rendering any styled content. Large or inefficient CSS files can delay this process, causing slower
FCP times. More on this can be found at Google Web.dev on FCP [8].

e Largest Contentful Paint (LCP)

LCP measures the time it takes for the largest visible content element (like a hero image or a large text block) to
be rendered on the screen. LCP is especially important for user experience, as users perceive slower LCP times
as slow-loading pages. CSS impacts LCP in similar ways to FCP, as the browser must apply styles before

rendering larger elements. If the CSS is bloated or inefficient, LCP times will increase.Learn more about LCP at

e Google Web.dev on LCP [9].

Cumulative Layout Shift (CLS)

CLS measures how much visible content shifts while the page is loading. This can happen if elements on the
page (like images or text) move unexpectedly as other resources (such as CSS) are loaded and applied. Poorly
optimized CSS, especially in combination with large stylesheets or delayed font loading, can cause layout shifts,
leading to a higher CLS score. Further reading on CLS is available at Google Web. Dev on CLS [10].
Time to Interactive (TTI)

TTI measures how long it takes for a page to become fully interactive. In other words, this is the time it takes
from when a user first opens the page until it can respond to user inputs (clicks, scrolling, etc.). CSS can
influence TTI by delaying the time it takes for the page to render, particularly if the CSS blocks rendering or has
high specificity.
Explore more about TTI at Google Web.dev on TTI [11].

2.2. CSS Performance optimization techniques

2.2.1.Class Scoping

When CSS is not scoped, the browser has more rules to check. This increases rendering delays. Also, there is a
possibility that CSS rules will leak to an element that wasn't meant to be styled with the rule. So what is CSS
scoping? Scoped styled allow you to contain a set of styles within a single component or a set of components on

the page. You can do this many different ways.

The easiest of them all is to name every single element with a unique class hame. Some libraries use a string of
generated tokens to add to your class names to make them unique. This technique has a very high potential for

automating.

The second option is Shadow DOM. The shadow DOM enables complete encapsulation of styles within web
components. It isolates the styles applied to a specific component, preventing them from affecting other parts of

the page. Shadow DOM is mostly used in development of web components and provides a great isolation of

192



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

styles. This technique might be difficult to apply using automation than class naming. It is still possible to

achieve, but will need the automation script to be aware of component context [12].

The last way of doing class scoping is the use of the CSS @scope rule. It is currently under development and not
widely supported yet. As of the time of writing, Chrome (128) and Safari (17.5) do support it, but Firefox (130)
doesn't [13]. This technique can be difficult to automate. Same issues as Shadow DOM. The script must know

the component's context to scope it.

The honorable mention is the 'scoped' attribute on the <style> tag. This paper will not mention it since it has

been deprecated.

Scoping classes through these methods ensure that the CSSOM size is small and speed up the browser's ability

to match styles to elements, improving overall page rendering performance.

The key resources to read about Class Scoping are:

Improving Web Performance by Optimizing Cascading Style Sheets (CSS): Literature Review and
Empirical Findings [5]

e "Using Shadow DOM," MDN Web Docs [12]

e "Styled Scoped” by C. Coyier [14]

e "@scope,” MDN Web Docs [15]

2.2.2.  Class Scoping

Unused CSS refers to the styles that are included in the code but are not applied to any elements in the current
page view. These unused styles get left out as the project grows. The first downside of unused CSS is that it
increases the CSS file size. Thus, it increases download times and negatively impacts performance. Second,
when a browser downloads CSS, it must process the entire file, even if only a small part of the styles is actually
applied to the page. This creates processing overhead, as the browser spends time parsing and loading unused
styles. Removing unused CSS not only reduces file size but also speeds up the CSSOM construction process,

leading to faster page rendering.

It is a very difficult problem to solve. If you already have some unused CSS, you will need to find a way to
remove it. Automation might not be an answer. To understand which CSS selectors are unused, you should
check coverage on every single page of your entire site. You should check it while running all JavaScript. Test

all combinations of states and media queries [16].

I will analyse different ways of removing Unused CSS and see which automatic removal provides the best

results. Also, | want to understand what the performance implications are when we have unused CSS.

The key resources to read about Unused CSS:

193



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

e "How Do You Remove Unused CSS From a Site?" by C. Coyier [16] "CSS performance optimization"
by MDN Web Docs [17]

e "Optimizing for Production” TailwindCSS documentation [18]

3. Methodology

In this section, | will try to outline the approach to analysing the impact of automatic CSS refactoring. The two
CSS performance issues that | will explore, discussed in previous section, are class scoping and unused CSS.

They are identifies as key areas for optimization in large-scale applications [5].

3.1. Experiment Setup

To evaluation the effect of class scoping and unused CSS optimization, | will use several key performance
metrics (such as First Contentful Paint (FCP), Largest Contentful Paint (LCP), and Time to Interactive (TTI)).

Those key metrics will be used before and after | apply automated refactoring techniques.

The steps for these experiments will include:

o Selecting Web Pages for Analysis:

I will have a set of web pages selected for this analysis. There will be static and dynamic page types so we can
see the performance implications on both. Some pages will have unscoped CSS with long queries. Others will
have a lot of unused styles. For each of the test web pages, we will have baseline webpages with optimized CSS.
The pages will go through a performance audit tool (e.g., Google Lighthouse).

e Tools for Measuring Performance:

I will measure the performance of each page using tools like:

o Google Lighthouse: It provides metrics on page performance, including FCP, LCP, and TTI.

o Chrome DevTools: The Coverage tool in DevTools will be used to identify the amount of unused CSS
on each page. This tool is not very reliable in identifying the correct percentage of unused CSS. Thus, |
will use it with caution.

o Custom Python Script: A Python script will be developed to automate the performance measurements.
This script will extract metrics from Lighthouse reports. It will show the performance differences

before and after refactoring.

3.2. Analysis of Class Scoping

I will analyse class scoping by comparing performance metrics from two versions of the same web pages: one
using global CSS and the other using scoped CSS. | will use CSS Modules to generate unique class nhames for
each component automatically. CSS Modules will be integrated into the build process. This will ensure that

styles are scoped automatically.

I will use performance metrics such as FCP and LCP to compare between the globally scoped and class-scoped

194



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

versions. | expect that scoping will lead to reduced CSSOM size and faster rendering times.

3.3. Analysis of Unused CSS

Same will go for the unused CSS. | will assess the impact of removing unused CSS by running the baseline
version first. Then | will remove all unused CSS using tools such PurgeCSS [19]. The same performance
metrics (FCP, LCP, and TTI) will be used to understand performance impact of original and optimized versions
of the web pages.

3.4. Reporting

The performance differences between the original and refactored pages will be visualized using graphs. The
custom Python script mentioned earlier will:

e Pull the Lighthouse reports for each version of the pages.

e Extract the relevant metrics (FCP, LCP, TTI).

e Plot graphs comparing performance before and after applying class scoping and unused CSS removal
techniques.

These graphs will illustrate the impact of automated CSS refactoring, showing improvements in load times,
rendering performance, and overall page interactivity. The results will be analysed to determine which technique
(class scoping or unused CSS removal) has the most significant impact on performance, and the findings will be
discussed in the next section of the paper.

4. Experiment and Analysis

For this experiment, | created two simple webpages. One had dynamic rendering, where | called a JS function
that attaches some HTML to the root component. The second one was a static page. Both of them had 500+
unused styles, some deeply nested styles, and some complicated queries. You can find the repository with
everything I used for the analysis on GitHub [20].

| used the serve CLI command to run my webpage on an HTTP server [21]. Then | ran the CLI version of

Lighthouse with some throttling configurations.

lighthouse http://localhost:62129/html_dynamic_unoptimized --throttling-
method=devtools \
--throttling.cpuSlowdownMultiplier=4 \
--throttling.downloadThroughputKbps=1500 \
--throttling.uploadThroughputkbps=750 \
--throttling.latencyMs=150

I chose throttling to simulate a slower, real-world environment. The web pages | tested are small, so without

throttling, the performance differences might not be noticeable. By slowing down the CPU and network speed, |

195



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

created conditions similar to those on mobile devices or slower networks. This helps show how the
optimizations would perform in a more realistic scenario. Without throttling, the results could be too fast to
reveal meaningful differences.For all the performance tests through Lighthouse, | did three independent cache-

free runs. Then | took the average numbers of key metrics of interest, such as FCP and LCP.

The code for the Python script to get the averages from Lighthouse JSON is below.

import json
import os

# Function to load JSON data from a file
def load_json(file_path):
with open(file_path, 'r') as f:
return json.load(f)

# Function to extract relevant metrics (FCP, LCP)
def extract_metrics(data):

fcp = [1

Iep = [1]

# Loop through each run and extract metrics
for run in data:
fcp.append(run[ "audits' ][ 'first-contentful-paint'][ ' 'numericValue'])
lcp.append(run[ 'audits']['largest-contentful-
paint']['numericvalue'])

return {
"fcp': fcp,
"lcp': 1cp,
}

# Function to calculate average of a List
def calculate_average(metrics):
return sum(metrics) / len(metrics)

# Load unoptimized and optimized results from files

unoptimized_file = os.path.join(os.path.dirname(__file_ ),
"static_unoptimized_results.json')

optimized file = os.path.join(os.path.dirname(__file ), 'scoped css',
'static_optimized_results.json')

unoptimized data = load_json(unoptimized file)
optimized data = load_json(optimized_file)

# Extract metrics from both datasets
unoptimized_metrics = extract_metrics(unoptimized_data)

optimized_metrics = extract_metrics(optimized_data)

# Example: Calculate and print the average for each metric (Unoptimized)

196



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

print("Unoptimized Metrics Averages:")
print(f"FCP: {calculate_average(unoptimized metrics['fcp']):.2f} ms")
print(f"LCP: {calculate average(unoptimized metrics['lcp']):.2f} ms")

print("\nOptimized Metrics Averages:")
print(f"FCP: {calculate_average(optimized metrics['fcp']):.2f} ms")
print(f"LCP: {calculate_average(optimized metrics['lcp']):.2f} ms")

Lighthouse results for dynamic unoptimized page were like this:

Unoptimized Metrics Averages:
FCP: 1267.93 ms
LCP: 1267.93 ms

Results for static unoptimized page:

Unoptimized Metrics Averages:
FCP: 1275.03 ms
LCP: 1275.03 ms

4.1. Unused CSS

For my first analysis of automated CSS refactoring, |1 wanted to show how unused CSS impacts the performance

of my webpage. | used PostCSS [22] with the PurgeCSS plugin applied [19].

PostCSS configuration file “postcss.config.js’:

import purgecss from '@fullhuman/postcss-purgecss’

export default (ctx) => ({
plugins: [

purgecss({
content: ['./**/*. html']

1)
]
1)

| used the PostCSS CLI command to automatically clean the CSS of unused queries.

npx postcss ./static_unoptimized.css -o ./unused_css/static_optimized.css

Then | executed the lighthouse performance test on a newly created page with optimized CSS. The results were

pretty good, considering that the webpage was small.

197



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

Optimized dynamic web page results:

Optimized Metrics Averages:
FCP: 1207.40 ms
LCP: 1207.40 ms

Optimized static web page results:

Optimized Metrics Averages:
FCP: 1229.40 ms
LCP: 1229.40 ms

4.2. Scoped CSS

To apply scoped CSS optimization to our CSS, | used PostCSS too. Yet, this time | used the “postcss-modules’
plugin [23]. The CLI command to optimize the CSS was the same as for section 4.1. The script changed all CSS
queries, including global queries, to this format “[name]__[local] _ [hash:base64:5]". The nesting of global

queries persisted and had to be fixed manually.

The results of the lighthouse performance analysis after CSS optimization are as follows.

Optimized dynamic web page results:

Optimized Metrics Averages:
FCP: 1266.81 ms
LCP: 1266.81 ms

Optimized static web page results:

Optimized Metrics Averages:
FCP: 1285.35 ms
LCP: 1285.35 ms

4.3. Analysis

For easy visualization | have used a python script to plot the differences of FCP and LCP.

import matplotlib.pyplot as plt
import numpy as np

categories = ['Dynamic', 'Static']
optimizations = ['Removing Unused CSS', 'Making Scoped CSS']

198



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

# Metrics for Removing Unused CSS

removing unused_css = {
'Dynamic': {'Unoptimized': 1267.93, 'Optimized': 1207.40},
'Static': {'Unoptimized': 1275.03, 'Optimized': 1229.40}

# Metrics for Making Scoped CSS

making_scoped css = {
'Dynamic': {'Unoptimized': 1251.32, 'Optimized': 1266.81},
'Static': {'Unoptimized': 1275.03, 'Optimized': 1285.35}

# Prepare the plot

fig, axes = plt.subplots(l, 2, figsize=(14, 6), sharey=True)
fig.suptitle('Average FCP and LCP Times Before and After Optimization',
fontsize=16)

# Plot settings

bar_width = 0.35

opacity = 0.8

index = np.arange(len(categories))

# Function to create bar charts
def create_bar_chart(ax, data, title):

unoptimized = [data[cat][ 'Unoptimized'] for cat in categories]
optimized = [data[cat][ 'Optimized'] for cat in categories]

ax.bar(index, unoptimized, bar_width, alpha=opacity, label='Unoptimized',
color="skyblue')

ax.bar(index + bar_width, optimized, bar_width, alpha=opacity,
label="Optimized', color="'salmon')

ax.set_xlabel('Content Type')
ax.set_ylabel('Time (ms)")
ax.set_title(title)

ax.set_xticks(index + bar_width / 2)
ax.set_xticklabels(categories)
ax.legend()

ax.grid(True, linestyle='--', alpha=0.7)

# Create bar charts for each optimization strategy
create_bar_chart(axes[0], removing unused_css, ‘'Removing Unused CSS')

create_bar_chart(axes[1], making_scoped css, 'Making Scoped CSS")

plt.tight_layout(rect=[0, ©.03, 1, 0.95])
plt.show()

5. Results

The experiments conducted on both dynamic and static web pages showed some insights into the effectiveness

199



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

of automated CSS refactoring techniques. The two main techniques analyzed were the removal of unused CSS
and the implementation of scoped CSS.

Average FCP and LCP Times Before and After Optimization

Removing Unused CSS Making Scoped CSS

uUnoptimized Unoptimized
1400 A 1

Optimized Optimized

1200

1000 4

Time (ms)

800 1

Time (ms)

Dynamic Static Dynamic
Content Type

Static
Content Type

Figure 1: The results of analysis
5.1. Removal of Unused CSS
For the dynamic web page:

e Unoptimized FCP and LCP: 1267.93 ms
e Optimized FCP and LCP: 1207.40 ms

e Improvement: 60.53 ms (4.77% decrease)
For the static web page:

e Unoptimized FCP and LCP: 1275.03 ms
e Optimized FCP and LCP: 1229.40 ms

e Improvement: 45.63 ms (3.58% decrease)
5.2. Implementation of Scoped CSS
For the dynamic web page:

e Unoptimized FCP and LCP: 1251.32 ms
e Optimized FCP and LCP: 1266.81 ms
e Degradation: 15.49 ms (1.24% increase)

For the static web page:

e Unoptimized FCP and LCP: 1275.03 ms

200



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

e Optimized FCP and LCP: 1285.35 ms
e Degradation: 10.32 ms (0.81% increase)

6. Discussion

The results of our experiments reveal several interesting insights into the effectiveness of automated CSS

refactoring techniques.

Removal of Unused CSS:

This technique showed positive results for both dynamic and static web pages.

The improvement was more pronounced in the dynamic web page (4.77% decrease in loading time)
compared to the static web page (3.58% decrease).

These results suggest that removing unused CSS can lead to modest but meaningful performance
improvements, particularly for dynamic content.

Implementation of Scoped CSS:

Contrary to expectations, the implementation of scoped CSS led to a slight degradation in performance
for both dynamic and static pages.

The dynamic page saw a 1.24% increase in loading time, while the static page experienced a 0.81%
increase.

This unexpected result warrants further investigation. Possible explanations is the benefits of scoped
CSS might be more apparent in larger, more complex applications where selector conflicts are more
likely to occur.

Comparison of Techniques:

Removal of unused CSS consistently outperformed the implementation of scoped CSS in our
experiments.

This suggests that, for immediate performance gains, focusing on eliminating unused styles might be
more beneficial than implementing scoped CSS.

Limitations:

The scope of this study is limited to relatively simple web applications, which may not fully reflect the
performance implications of automated CSS refactoring techniques in more complex systems.
Additionally, the experiments were conducted with a single set of web pages, and the diversity of page
structures and CSS architectures in real-world applications might lead to varying results. The chosen
metrics, such as FCP, LCP, and TTI, offer valuable insights, but further studies incorporating user-
perceived performance and scalability metrics could provide a more comprehensive understanding.
Finally, while tools like PurgeCSS and PostCSS Modules proved effective, their applicability to legacy

systems and compatibility with various CSS frameworks remains underexplored.

The results from the removal of unused CSS and the implementation of scoped CSS, though subtle, offer critical

insights into the nuances of performance optimization in modern web applications. The reduction in load times

through the elimination of unused CSS highlights the impact of removing unnecessary elements, particularly in

dynamic content-heavy environments. However, the slight degradation in performance metrics for scoped CSS

201



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

might be due to the relatively simple test environment. In larger, more complex web applications, scoped CSS is
likely to offer more substantial improvements by mitigating selector conflicts and preventing style leakage
across components. Future work should focus on testing scoped CSS in environments with more intricate CSS

architectures to reveal its true potential.

7.Conclusion

This study showed methods of automated CSS refactoring and their performance impact on the web application.
Removing of the unused CSS proved to be an effective optimization technique, consistently improving
performance across both dynamic and static web pages. The implementation of scoped CSS, contrary to
expectations, led to slight performance degradations in our specific test environment. However, the scoped CSS
performance degradation could be explained by the small test environment that couldn't show the real benefit

that it might lead to in large applications.

Further investigation into performance implications of scoped CSS in large, more complex applications can be
done in the future. A more comprehensive study involving a wider range of web applications and CSS

optimization techniques would provide a broader understanding of their relative effectiveness.

In conclusion, while automated CSS refactoring techniques show promise for improving web performance, their
effectiveness can vary based on the specific technique and application context. Web developers should carefully
consider and test these techniques in their unique environments to ensure they achieve the desired performance
improvements. As web technologies continue to evolve, ongoing research and experimentation in this area will

be crucial for developing more effective and reliable CSS optimization strategies.

References

[1] Google, "Optimize resource loading," web.dev. [Online]. Available:

https://web.dev/learn/performance/optimize-resource-loading. [Accessed: 05-Sep-2024].

[2] Google/SOASTA Research, 2017. [Online]. Available: https://www.thinkwithgoogle.com/marketing-
strategies/app-and-mobile/page-load-time-statistics/. [Accessed: 05-Sep-2024].

[3] Tailwindcss Documentation [Online]. Available https://tailwindcss.com/docs/installation. [Accessed:
05- Sep-2024]

[4] E. J. Etemad and T. Atkins Jr., Selectors Level 4. W3C, Mar. 2024. [Online]. Available:
https://drafts.csswg.org/selectors/#specificity-rules [Accessed: 06-Sep-2024]

[5] S. Kuparinen, Improving Web Performance by Optimizing Cascading Style Sheets (CSS): Literature
Review and Empirical Findings, Master’s thesis, Faculty of Science, University of Helsinki, Helsinki,
Finland, May 2023. [PDF]. Available: https://helda.helsinki.fi/server/api/core/bitstreams/694695cf-
1bdf-4432-b255- f68d6bdb4b76/content

202



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

[6] "Study: Web Users Prefer Speed Over Customization," Website Optimization, Aug. 12, 2018. [Online].

Available: https://www.websiteoptimization.com/speed/tweak/design-factors/ [Accessed: 06-Sep-2024]

[7] J. R. Lewis and M. Moscovitz, "Optimizing CSS for Performance," in AdvancED CSS, Apress, 2009,
pp. 275-289. [Online]. Available: https://doi.org/10.1007/978-1-4302-1933-0_10 [Accessed: 06-Sep-
2024]

[8] P. Walton, "First Contentful Paint (FCP)," web.dev, Dec. 6, 2023. [Online]. Available:
https://web.dev/articles/fcp [Accessed: 06-Sep-2024]

[9] P. Walton, "Largest Contentful Paint (LCP),” web.dev, Feb. 19, 2024. [Online]. Available:
https://web.dev/articles/Icp [Accessed: 06-Sep-2024]

[10] P. Walton and M. Mihajlija, "Cumulative Layout Shift (CLS)," web.dev, Apr. 12, 2023. [Online].
Available: https://web.dev/articles/cls [Accessed: 06-Sep-2024]

[11] P. Walton, "Time to Interactive (TTI),” web.dev, Nov. 17, 2023. [Online]. Available:
https://web.dev/articles/tti [Accessed: 06-Sep-2024]

[12] "Using Shadow DOM," MDN Web Docs, Aug. 30, 2024. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/AP1/Web_components/Using_shadow_DOM
[Accessed: 09- Sep-2024]

[13] "@scope,” Can | use, Aug. 2024. [Online]. Available: https://caniuse.com/?search=@scope [Accessed:
09-Sep-2024]

[14] C. Coyier, "Style Scoped,” chriscoyier.net, Oct. 19, 2023. [Online]. Available:
https://chriscoyier.net/2023/10/19/style-scoped/ [Accessed: 09-Sep-2024]

[15] "@scope,” MDN Web Docs, Sep. 9, 2024. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/CSS/@scope [Accessed: 09-Sep-2024]

[16] C. Coyier, "How Do You Remove Unused CSS From a Site?" CSS-Tricks, Nov. 29, 2019. [Online].
Available: https://css-tricks.com/how-do-you-remove-unused-css-from-a-site/  [Accessed: 11-Sep-
2024]

[L7] "CSS Performance Optimization,” MDN Web Docs, Sep. 9, 2024. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Learn/Performance/CSS [Accessed: 11-Sep-2024]

[18] "Optimizing for Production,” Tailwind CSS v2 Documentation, Aug. 2024. [Online]. Available:

https://v2.tailwindcss.com/docs/optimizing-for-production#basic-usage [Accessed: 11-Sep-2024]

[19] "PurgeCSS -  Documentation”  PurgeCSS, Aug. 2024. [Online].  Available:

203



International Journal of Computer (1JC) - Volume 50, No 1, pp 189-204

https://purgecss.com/introduction.html [Accessed: 11-Sep-2024]

[20] Dzheky, CSsSs Refactoring Test, GitHub. [Online]. Available:
https://github.com/Dzheky/css_refactoring_test [Accessed: 13-Sep-2024]

[21] Vercel, Serve, GitHub. [Online]. Available: https://github.com/vercel/serve [Accessed: 14-Sep-2024]

[22] "PostCSS - A Tool for Transforming CSS with JavaScript,” PostCSS, Aug. 2024. [Online]. Available:
https://postcss.org/ [Accessed: 14-Sep-2024]

[23] Alexander Madyankin, postcss-modules, GitHub. [Online]. Available:

https://github.com/madyankin/postcss-modules

204



