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Abstract 

The proposed machine fault diagnostic system utilizes acoustic signal processing and machine learning for early 

fault detection and localization in induction motors. The growth of the fault in an induction motor tends to be 

quick and can result in a significant failure that can lead to economic loss and huge maintenance expenses. 

Therefore, developing accurate and sensitive induction motor fault diagnostic procedures for the maintenance 

system is crucial. The main purpose of this paper was to propose an optimized noise reduction technique for an 

induction motor fault diagnosis system and two novel acoustic feature vectors that can be used in machine 

learning algorithms. The contribution of this paper is to implement the effectiveness of the fusion features of 

acoustic signals by concatenating them from different domains. The acoustic dataset for an induction motor is 

collected in a motor workshop, and the NLMS algorithm is used for background noise cancellation due to its 

quick adaptation, stability, and efficient error minimization. Data are segmented and normalized during pre-

processing, and the induction motor fault diagnosis system is implemented using MATLAB. Zero Crossing Rate 

(ZCR), Spectral Entropy (SE), and Energy Entropy (EE) feature vectors are combined, and the F1 feature vector 

is built. Correlation calculations are employed to assess the motor's condition status, and if a fault is detected, 

the system proceeds with feature extraction for fault localization. In the feature extraction stage for induction 

motor (IM) fault localization, Gammatone Cepstral Coefficients (GTCC) and Mel Frequency Cepstral 

Coefficient (MFCC) features are combined to construct the second feature vector (F2). This feature vector is 

used as training feature data in machine learning algorithms. If the input test signal is strongly correlated with 

the faulty signals, the type of faults is classified using a Support Vector Machine (SVM) classifier. 
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According to the experimental results, the proposed system achieved an average accuracy of 99% in fault 

detection, 97.5% in fault localization, and an error rate of 2.5%. 

Keywords: Acoustic Signal Processing; Correlation Algorithm; Energy Entropy; Fault Detection and 

Localization; Mel-Frequency Cepstral Coefficient; Normalized Least Mean Square Algorithm; Spectral 

Entropy; Support Vector Machine; Zero Crossing Rate. 

1. Introduction  

The development of technology has enhanced convenience and ease of living, making it crucial to understand 

the potential defects in induction motors for effective industry repair and maintenance. A promising method for 

detecting and localizing faults in induction motors is through acoustic-based techniques, which analyze the 

sound signals generated by the motors. These signals can reveal the motor's operating conditions and help 

identify various faults, such as Inner Race Fault, Outer Race Fault, Ball Fault, Rotor Fault, and etc. This 

research aims to enhance the performance of acoustic-based fault detection and localization systems using 

machine learning by introducing two fusion-based feature vectors. It focuses on analyzing the acoustic signals 

from induction motors and developing a machine learning model for accurate fault detection and localization. 

The study will also assess the system's accuracy and reliability. The results will contribute to more effective and 

efficient induction motor fault detection systems, potentially reducing maintenance costs and informing future 

acoustic-based fault diagnosis system designs.  

2. Literature Review and Related Work 

In order provide insight into the many strategies used and the developments in the detection and diagnosis of 

induction motor (IM) problems, this section presents a review of the literature. The use of acoustic emission for 

condition monitoring and fault diagnosis of induction motors, highlighting its accuracy, efficiency, and potential 

advantages and limitations in detecting various faults in industrial machinery are presented in [1]. Effectively 

eliminating both white noise and nonlinear interference from vibration signals [2] using the combined adaptive 

filter method, using self-adaptive noise cancellation and kernel least mean square algorithms, to enhance fault 

features in planetary gearboxes. [3] proposes a novel noise reduction method by combining the least mean 

square (LMS) adaptive filter and spectral subtraction algorithms to enhance speech signals by reducing noise 

and improving signal-to-noise ratio (SNR), demonstrating superior performance compared to existing methods. 

Reference [4] combining a normalized least mean square (NLMS) filter with Hilbert envelope analysis to detect 

broken rotor bars in squirrel-cage induction motors, demonstrating improved accuracy over traditional Fast 

Fourier Transform (FFT) methods under various loading conditions. [5] proposes a multimodal feature fusion-

based deep learning method for real-time and accurate online fault diagnosis of rotating machinery by extracting 

and combining features from the time domain, frequency domain, and curvature data to improve diagnostic 

efficiency. [6] introduces an improved fault diagnosis method for electromechanical systems using a zero-

crossing algorithm, optimizing its parameters to enhance fault recognition accuracy and robustness, validated 

through simulations and experiments. [7] presents a multi-step progressive fault diagnosis method for rolling 

element bearings using energy entropy theory and a hybrid ensemble auto-encoder, which integrates statistical 
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analysis with deep learning to improve feature learning, feature reduction, and fault classification, 

demonstrating superior efficiency and accuracy in practical applications. [8] proposes a novel fault damage 

degree identification method using high-order differential mathematical morphology gradient spectrum entropy 

(HMGSEDI) to accurately quantify the fault severity in rolling bearings, validated through experiments showing 

improved identification accuracy and robustness compared to traditional methods. [9] discusses various entropy-

based methodologies used for detecting motor faults by analyzing signal complexities and integrating these 

methods with artificial intelligence for accurate classification. [10] compares the effects of Mel-Frequency 

Cepstral Coefficients (MFCC) and Gammatone Cepstral Coefficients (GTCC) on identifying the ideal recording 

time for body sound location identification, finding that MFCC features generally provide better performance 

than GTCC features.  [11] proposes a method for automatic gearbox fault diagnosis using Mel-Frequency 

Cepstral Coefficients (MFCCs) and Support Vector Machine (SVM) to enhance machine condition monitoring 

by detecting and classifying mechanical faults with high accuracy based on acceleration signals from rotating 

machinery. Support Vector Machines (SVMs) are used [12] for induction motor fault detection because they can 

effectively classify different fault conditions by finding an optimal hyperplane that separates data points 

representing different classes, and by using kernel functions like Radial Basis Function (RBF) to handle non-

linear data and improve the accuracy of fault classification. 

3. Research Methodology 

This paper aims to establish a fault detection and localization system for induction motors using Zero Crossing 

Rate (ZCR), Spectral Entropy (SE), Energy Entropy (EE), Gamma Tone Cepstral Coefficients (GTCC), Mel-

Frequency Cepstral Coefficient (MFCC) and Support Vector Machine (SVM). ZCR, SE, and EE are employed 

to extract feature vectors for fault detection in induction motors. The efficiency and applicability of machine 

fault detection and classification are enhanced through the utilization of correlation classifier. The rotating 

machine fault diagnosis system involves two primary processes: fault detection and fault localization. The 

design of the proposed machine fault diagnosis system is illustrated in Figure 1 through a descriptive flowchart. 

The correlation algorithm is used to carry out fault detection. The degree of similarity between training and test 

features is determined using the correlation algorithm. There are 300 recordings in the training features. The 

statistical features are extracted from the induction motor sound signals. The statistical features include mean, 

median, maximum, minimum, variance, standard deviation, skewness and kurtosis.  

In the detection section, an incoming test data of audio file is first entered as one row in the testing feature 

section. Correlation between test data and successive rows of training features is calculated, producing three 

hundred different correlation values. A row with a high correlation value is chosen, its index is displayed, and 

classified into class zero (indices 1 to 60) or class one (indices 61 to 300). 

In the test localization feature extraction section, MFCC and GTCC features are combined to construct the F2 

feature vector. This feature vector is used as training features data in machine learning algorithms. Faults are 

classified and located using a Support Vector Machine if the input test signal strongly correlates with the faulty 

signal. 
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Figure 1: Proposed system design of fault detection and classification system for induction motor 

3.1. Acoustic Data Collection 

The datasets are constructed with acoustic signals that were collected at specific current levels with a 

microphone close to an induction motor. A completely transparent analog amplifier is utilized to amplify the 

signals, which have been collected under typical environmental conditions. The acoustic recordings have a 

resolution of 16 bits, monophonic, and (200.5Hz – 1.9kHz) frequency range.  The sampling frequency of 44.1 

kHz is commonly used in audio applications, including those related to motor control, due to the Nyquist 

theorem. This theorem states that the sampling frequency must be at least twice the maximum frequency of the 

signal being sampled to accurately reconstruct the original signal. The choice of a 16-bit analog-to-digital 

conversion (ADC) provides enough resolution to capture the dynamic range and nuances of the signals involved 

in motor control applications. The recorded acoustic signals are segmented into two-second (2sec x 44.1 kHz) 

duration because the necessary fault features are contained within that brief time frame.  

 

Figure 2: One phase capacitor start induction motor 
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The dataset comprises of 400 recordings, encompassing normal and four faulty conditions (Inner Race Fault, 

Outer Race Fault, Ball Fault, and Rotor Fault). The experimental induction motor setup is shown in Table 1. 

Table 1: Specification of induction motor 

SERIAL INDUCTION MOTOR 

Motor Type One Phase, Capacitor Start Motor 

Model YCL-100L-4, 

Power 2 HP, 220 V 

Specification Values 50Hz, 13 A, 1440 R.P.M. 

3.2. Noise Reduction 

In terms of noise reduction with adaptive filtering algorithm, Normalized Least Mean Squares (NLMS) 

algorithm is a popular technique used in signal processing and adaptive filtering. NLMS is an adaptive filter 

algorithm that aims to minimize the mean square error between the desired signal and the output of the filter. It's 

widely used for various applications including noise cancellation, echo cancellation, equalization, and system 

identification. 

3.2.1. Adaptive Normalized Least Mean Square 

The Normalized Least Mean Square (NLMS) algorithm is an enhancement of the Least Mean Squares (LMS) 

algorithm, one of the most widely used methods for adaptive filtering due to its simplicity and effectiveness. 

The core idea of LMS is to iteratively adjust the filter coefficients to minimize the mean square error between 

the desired signal and the filter output. LMS algorithms have a step size that determines the amount of 

correction applied as the filter adapts from one iteration to the next. A step size that is too small increases the 

time for the filter to converge on a set of coefficients. A step size that is too large might cause the adapting filter 

to diverge and never reach convergence. In this case, the resulting filter might not be stable. The NLMS 

algorithm modifies this approach by normalizing the step size used in the coefficient update equation, which 

significantly improves convergence speed and stability. The procedure of the NLMS algorithm is the same as 

the LMS algorithm except for the estimation of the time-varying step-size μ(k).  

 

Figure 3: Adaptive NLMS algorithm 
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Figure 3 depicts the filter structure of an NLMS algorithm using the self-adjustable step-size μ(k) in the NLMS 

algorithm given in Equation 1. 

𝜇(𝑘) =
𝜇

𝜀+‖𝜑⃑⃑ (𝑘)‖2 (1) 

Where, 𝜑⃑ (𝑘) represents the data vector. ε is a very small positive number that prevents the denominator from 

equaling zero when  ‖𝜑⃑ (𝑘)‖2 approaches zero. 

The step-size 𝜇(𝑘) is time-varying because the step-size changes with the time index k. Substituting 𝜇(𝑘) into 

the parametric vector 𝑤⃑⃑ (𝑘) equation yields the following Equation 2. 

𝑤⃑⃑ (𝑘 + 1) = 𝑤⃑⃑ (𝑘) + 𝜇(𝑘)𝑒(𝑘)𝜑⃑ (𝑘) (2) 

Where, 𝜑⃑ (𝑘) represents the data vector, 𝑒(𝑘) is the error signal, and  𝜇(𝑘) is the step size. 

Figure 4 demonstrates the resultant output after filtering the healthy signal. As shown in Figure 4, the signal is 

smoother than the raw signal by using the NLMS filter. This leads to the performance of system. Table 2 shows 

the performance of the proposed system using NLMS filter.  

 

Figure 4: Original signals and filtering signal of healthy state using NLMS algorithm 

Table 2:  Performance of proposed system using NLMS 

 Accuracy Precision Recall F1-Score 

NLMS 97.5 97.73 97.5 97.53 

3.2.2. Mean Square Error (MSE) 

Mean Square Error (MSE) is crucial for evaluating and improving model performance in statistical modeling 

and machine learning, particularly in induction motor fault detection systems, where it ensures the reliability and 

efficiency of critical machinery. MSE aids in anomaly detection and fault classification by identifying 

significant deviations between actual and predicted motor performance, enhancing model accuracy, and 

evaluating model performance by averaging the squared errors between predicted and actual values, particularly 
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for assessing induction motor behavior and efficiency. A lower values of MSE indicates that the model's 

predictions are close to the actual motor conditions. If the MSE exceeds a predefined threshold, it indicates a 

potential fault. Mathematically the MSE equation is represented as: 

𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑦𝑖 −  𝑦̂𝑖)

2𝑛
𝑖=1   (3) 

Where n is the number of data points, 𝑦𝑖  is the actual value for the i-th data point, and 𝑦̂𝑖is the predicted value 

for the i-th data point. 

3.2.3. Signal-to-Noise Ratio (SNR) 

Signal-to-Noise Ratio (SNR) in induction motor fault detection and classification systems is a measure used to 

quantify the level of the desired signal relative to the background noise. Higher SNR indicates a clearer and 

more detectable fault signal, making it easier to accurately identify and classify such as ball fault, inner race 

fault, outer race fault, rotor fault, bearing faults, stator faults, and etc. in the induction motor. Low SNR can 

obscure the signal, making it difficult to distinguish between normal operating conditions and faults. Using 

adaptive noise cancellation techniques and real-time signal processing algorithms helps maintain a high SNR 

even in changing operational environments. Mathematically the SNR equation is represented as: 

𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
)                     (4) 

where Psignal is the power of the signal and Pnoise is the power of the noise. 

Table 3 presents experimental results of the average Signal to Noise Ratio (SNR) and average Means Square 

Error (MSE) for different types of faults in induction motor. 

Table 3: Different values of SNR and MSE of induction motor signals 

No. Type of Signals Averaged SNR Averaged MSE 

1. Normal Signal -6.4636 0.0158 

2. Ball Fault Signal -7.9908 0.0104 

3. Inner Race Fault Signal -6.3257 0.0178 

4. Outer Race Fault Signal -8.1923 0.0182 

5. Rotor Fault Signal -6.3390 0.0157 

3.3. Preprocessing 

Data normalization adjusts the amplitude of a signal to a desired level without altering the signal-to-noise ratio 

or relative dynamics, with one method involving setting the signal's peak magnitude to a specified level. It is 

also known as Max-Min normalization. For every feature, the minimum value of that feature gets transformed 

into a -1, the maximum value is transformed into a 1, and every other value gets transformed into a decimal 



International Journal of Computer (IJC) - Volume 51, No  1, pp 149-169 

 

156 

between -1 and 1. Mathematically the normalization equation is represented as  

𝑥𝑛𝑜𝑟𝑚 = (𝑥 − 𝑥𝑚𝑖𝑛)/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)              (5) 

where, 𝑥𝑛𝑜𝑟𝑚 is the normalized value of x. The normalized recorded signals are described in Figure 5.  

 

Figure 5: Normalized acoustic signals 

During the pre-processing stage of acoustic feature extraction, the non-stationary characteristics of acoustic 

signals are addressed by segmenting them into frames, overlapping to retain information, and minimizing 

discontinuities through windowing techniques, such as the Hanning function, to maintain a continuous 

waveform for further experimentation. Equation 6 defines the mathematical expression of a Hanning window 

function. 

𝑤(𝑛) = 0.5 (1 − 𝑐𝑜𝑠(2𝜋
𝑛

𝑁−1
))                        (6) 

Where, 𝑁 is the total number of samples (the window length), and 𝑛 is the sample index ranging from 0 to N-1. 

The statistical properties of an acoustic signal are time-dependent due to its non-stationary nature. To analyze 

the signal effectively, it is necessary to extract spectral features and other characteristic properties from small 

signal blocks. The number of samples can be determined from time in seconds as follows. 

𝐹𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑠𝑟 ×  𝐹𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑       (7) 

where, 𝐹𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 is the frame length in sample, 𝑠𝑟 is the sampling rate and 𝐹𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑 is the frame 

length in seconds. 

The Equation 8 provided facilitates the computation of the expected number of frames. 

# 𝐹 =
𝑁𝑠−𝑀

𝑁𝑓−𝑀
           (8) 
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where, #F is the total number of frames, 𝑁𝑠 is the signal length in the sample, 𝑁𝑓 is the frame length in the 

sample, and 𝑀 is the frame overlap. 

Windowing reduces the amplitude of discontinuities at the borders of finite sequences. The Hanning window 

function is employed in the study for its effectiveness in reducing spectral leakage and providing good 

frequency resolution. The first frame of the recorded data after windowing is shown in Figure 6. 

 

Figure 6: First frame of the induction motor’s acoustic signals after windowing 

3.4. Feature Extraction for IM Fault Detection and Localization 

A fault detection and classification system for induction motors is proposed, leveraging fusion features like Zero 

Crossing Rate (ZCR), Spectral Entropy (SE), Energy Entropy (EE), Gamma Tone Cepstral Coefficient (GTCC), 

and Mel-Frequency Cepstral Coefficient (MFCC), alongside Machine Learning techniques including Support 

Vector Machine (SVM). The system aims to enhance fault detection and localization utilizing the proposed 

fusion features. 

3.5. Proposed Detection Features Extraction 

In the feature extraction stage, Zero Crossing Rate (ZCR), Spectral Entropy (SE), and Energy Entropy (EE) 

feature vectors are chosen. Then, feature selection is performed using the statistical approaches. The statistical 

features of Zero Crossing Rate (ZCR), Spectral Entropy (SE), and Energy Entropy (EE) feature vectors features 

are combined and fusion feature vector F1 is created as training features. Induction motor fault detection 

involves extracting specific features in the sound emitted by induction motor to identify and diagnose potential 

issues or malfunctions. Correlation calculations are employed to assess the motor's condition status, and if a 

fault is detected, the system proceeds with feature extraction for fault localization. The extracted feature vector 

for the induction motor fault detection task is illustrated in Figure 7. 
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Figure 7: The extracted feature vector for the induction motor fault detection 

3.5.1. Zero Crossing Rate (ZCR) 

Zero Crossing Rate (ZCR) is a fundamental feature in signal processing and audio analysis, measuring how 

often an audio signal's waveform crosses the zero amplitude line. It indicates signal transitions from positive to 

negative or vice versa. A higher ZCR generally indicates a higher frequency of signal changes, which can be 

associated with higher pitch sounds in audio signals. ZCR is valuable for tasks like speech recognition and 

music genre classification. It's calculated by counting sign changes in the signal within a specified window. The 

formula for ZCR within the window is typically expressed as: 

ZCR = 
1

𝑁−1
 ∑  |𝑠𝑖𝑔𝑛(𝑥[𝑛]) − 𝑠𝑖𝑔𝑛(𝑥[𝑛 − 1])|𝑁−1

𝑛=1        (9) 

Where N is the length of the window, x[n] is the value of the signal at sample index n, sign(x[n]) is the sign 

function. 

3.5.2. Spectral Entropy 

The spectral entropy of a signal is a measure of its spectral power distribution. The concept is based on the 

Shannon entropy, or information entropy, in information theory. Shannon’s Entropy is the measure of set of 

relational parameters that vary linearly with the logarithm of the number of possibilities [5]. Spectral entropy 

provides a measure of the complexity or randomness of a signal's frequency content. It is also a measure of data 

spread and is most commonly used to assess the dynamical order of a system. The main advantage of Shannon’s 

Entropy is that, it is better adapted to normal distributions. However, few drawbacks of this entropy are:  the 

possibility of losing more information due to aggregation, the possibility of over-estimation of entropy level if 

too many zones are used, and this method fails to explain temporal relationships between different values 

extracted from a time series signal. Shannon’s Entropy is obtained by multiplying the power in each frequency 

by the logarithm of the same power, and the product is multiplied by −1. The Shannon’s Entropy is given by the 

Equation 10. 

𝑆𝐸𝑁 =  ∑ 𝑝𝑓 𝑙𝑜𝑔
1

𝑝𝑓
𝑓                        (10) 
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Where, SEN is a Shannon’s entropy and 𝑝𝑓 is the power in each frequency. 

3.5.3. Energy Entropy 

Energy Entropy (EE) is a feature commonly used in signal processing and analysis, particularly in the field of 

fault detection in machinery like induction motors. In the context of feature extraction for fault detection, EE is 

a measure of the randomness present in the energy distribution of a signal. It quantifies the complexity of the 

energy distribution across different frequency components within the signal. EE is calculated by first dividing 

the signal into smaller segments (often using techniques like windowing), then computing the energy spectrum 

of each segment. Higher values of EE indicate greater complexity or irregularity in the signal's energy 

distribution, which can be indicative of faults or anomalies in mechanical systems of induction motors. The 

entropy of the energy distribution is calculated using methods Shannon entropy. 

E(f) = ∫ |𝑥(𝑡)|2𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡
∞

−∞
                                         (11) 

P(f) = 
𝐸(𝑓)

∑ 𝐸(𝑓)𝑓
                                                           (12) 

EE = −∑ 𝑃(𝑓) 𝑙𝑜𝑔2(𝑃(𝑓))𝑓                                      (13) 

Where E(f) is the energy spectrum of the signal using the Fourier Transform, x(t) is the signal, |𝑥(𝑡)|2 represents 

the squared magnitude of the signal, the integral computes the energy across all time, P(f) is the normalized 

energy spectrum, ∑ 𝐸(𝑓)𝑓  is the total energy across all frequencies, and EE is the Energy Entropy of the 

normalized energy spectrum. 

3.6. Feature Extraction for Fault Localization 

Feature extraction for fault localization involves selecting and transforming raw data into informative features to 

identify fault locations in a system. The effectiveness relies on feature quality, relevance, and modeling 

accuracy. Through this process, fault localization techniques help in maintenance and troubleshooting. The 

diagnosing of induction motor conditions requires a database of signals and features from diverse domains.  

 

Figure 8: The extracted feature vector for the induction motor fault localization 
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3.6.1. Mel-Frequency Cepstral Coefficient 

MFCC are fundamental in audio processing, capturing crucial spectral features used in tasks like speech 

recognition, speaker identification, and music genre classification. Their compact representation of the signal's 

spectral envelope makes them robust to variations in audio conditions. Widely employed in speech and audio 

processing, MFCCs play a pivotal role in tasks such as speech recognition and speaker identification. 

Log
Discrete Cosine 

Transform

Power Spectral 

FFT

Frame Blocking 

and Windowing

Filtering

Pre-emphasize

MFCC
 

Figure 9: Block diagram of MFCC feature extraction method 

In Figure 9, the process involves preprocessing the input signal with a pre-emphasis filter to enhance high 

frequencies. The signal is then divided into short time frames using framing, each frame is windowed with 

functions like the Hamming window. Subsequently, the Fast Fourier Transform (FFT) is applied to obtain the 

frequency representation. Following this, a mapping from linear to Mel frequency scale is defined, and filter 

bank coefficients are computed. Finally, Mel-Frequency Cepstral Coefficients (MFCCs) are derived using 

discrete cosine transformation. This comprehensive approach captures essential spectral features crucial for 

various audio processing applications. 

             MFCCi=√
2

N
  ∑ mj cos (

πi

N
(j-0.5))N

j=1                  (14) 

where, N represent the number of bandpass filters, and 𝑚𝑗 denotes the log band pass filter output amplitudes. 

3.6.2. Gamma Tone Cepstral Coefficient (GTCC) 

The Gamma Tone Cepstral Coefficients (GTCC) are a feature extraction method used in audio signal processing 

and speech recognition. It derived from modeling the human auditory system to capture auditory perception 

characteristics. GTCC involves, gamma tone filterbank: mimics the human cochlea's frequency analysis using 

gamma tone filters, filtering: audio signals are filtered through these gamma tone filters, covering various 

frequency bands, Cepstral Analysis: cepstral analysis emphasizes important frequency domain features by 

computing the cepstrum of the filtered signals, Coefficient Calculation: cepstral coefficients are derived from 

the filtered signals, capturing audio characteristics compactly. GTCCs are valuable for tasks like speech 

recognition, speaker identification, and audio classification, where understanding auditory perception is 

essential. The mathematical computation of Gamma Tone Cepstral Coefficients (GTCC) comprises several 

stages, including filtering the input signal through a gamma tone filterbank and conducting cepstral analysis. 

yk(t) = x(t) * hk(t)                                         (15) 

Where yk(t) is the gamma tone filterbank output of the k-th filter, x(t) is the input signal, and hk(t) is the impulse 
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response of each gamma tone filter. 

ck(t) = 𝐹−1{𝑙𝑜𝑔(|𝐹{𝑦𝑘(𝑡)}|
2)}                      (16) 

Where ck(t) is the cepstrum of each filtered signal, F denotes the Fourier transform, and |.| is the magnitude of 

the complex number. 

GTCCm = ∑ 𝐶𝑘(𝑡)𝑐𝑜𝑠 [
𝜋𝑚(𝑘−0.5)

𝑁
]𝑁

𝑘=1             (17) 

Finally, the GTCCs are obtained by taking the Discrete Cosine Transform (DCT) of the cepstral coefficients. 

Where N is the number of cepstral coefficients, m is the index of the GTCC, and 𝐶𝑘(𝑡)  are the cepstral 

coefficients. 

3.7.  Detection and Localization Algorithms 

Detection and localization algorithms are pivotal for induction motor fault diagnosis systems, facilitating early 

fault detection, reduced downtime, lower maintenance costs, improved operational efficiency, enhanced safety, 

and predictive maintenance strategies, ensuring optimal motor performance and reliability.  

 

Figure 10: Induction motor fault detection and localization system design 

Creating a comprehensive sample signal database containing induction motor fault waveforms and features is 

vital for effective condition detection. The subsequent discussion focuses on the theory behind Correlation and 

Support Vector Machine (SVM) algorithms, which are utilized for this purpose.  

3.7.1. Correlation 

In an induction motor fault detection system, correlation involves comparing a measured signal with a reference 

signal to identify faults. The reference signal represents normal motor behavior, while the measured signal is 
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monitored in real-time and may show deviations due to faults. The correlation coefficient, ranging from -1 to 1, 

measures the similarity between these signals: a high coefficient indicates strong similarity, while a low 

coefficient suggests anomalies. For the healthy stage, the induction motor's average correlation value is 1. By 

analyzing changes in the correlation coefficient over time, the system can detect motor faults. This method, 

often combined with other techniques, effectively identifies deviations associated with faults. The mathematical 

formula for calculating the correlation coefficient between two signals x(t) and y(t) can be expressed using 

Pearson's correlation coefficient r. 

r = 
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2 ∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

𝑛
𝑖=1

                          (18) 

Where n is the number of data points in the signals, xi and yi are individual data points of x(t) and y(t), 𝑥̅ and 𝑦̅ 

are the mean values of x(t) and y(t). In Table 4 presents experimental results of maximum correlation score for 

different types of faults in induction motor fault detection. 

 Table 4: Feature extraction for fault detection of induction motor  

No. Type of Faults Maximum Correlation Score Index 

1. Normal Signal 1 1 

2. Ball Fault 0.99922 69 

3. Inner Race Fault 0.99609 300 

4. Outer Race Fault 0.99891 226 

5. Rotor Fault 0.9981 272 

3.7.2. Support Vector Machine (SVM) 

Support Vector Machines are used for induction motor fault detection due to their ability to handle high-

dimensional and non-linear data, robust classification performance, and excellent generalization capabilities. 

These characteristics make SVMs particularly effective in identifying and classifying different types of motor 

faults, leading to more reliable and efficient maintenance and monitoring systems. The goal is to find a 

hyperplane in an n-dimensional space that optimizes the distance between data points and possible classes. 

Kernel functions, such as Radial Basis Function (RBF), Sigmoid, Gaussian, Linear, and Polynomial, are used to 

calculate the distance between data points. Adjusting the hyperparameters of these functions can lead to 

overfitting or underfitting, affecting the separation of classes. For multiclass classification, the problem is 

divided into several binary classification problems, using the same method for each. The Radial Basis Function 

(RBF) is specifically employed to determine the relationship between two variables.                      

K(x1,x2) = exp(-
‖x1-x2‖

2

2σ2
)                                        (19) 

where, ‖𝑥1 − 𝑥2‖ is the Euclidean distance between two points 𝑥1 𝑎𝑛𝑑 𝑥2, and 𝜎 is the variance. 
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4. Experimental Result 

The acoustic dataset is first collected on the induction motor type of one-phase capacitor starts motor in the 

motor workshop environment. The normalized least mean square (NLMS) algorithm is used in background 

noise cancellation of induction motor because it adapts quickly to changing noise environments, ensures 

stability by normalizing the input signal, and efficiently minimizes the mean square error between the desired 

and actual signals. The dataset consists of 400 recordings, which include 1 to 80 normal sounds and 81 to 400 of 

four different faults (Inner Race Fault, Outer Race Fault, Ball Fault, and Rotor Fault). Each of the four different 

faults has 80 samples. The average length of each recorded data is 2 seconds.  

There are 300 sound files of induction motor in the training features. The 240 features that are taken from the 

training features section include Inner Race Fault of 60, Outer Race Fault of 60, Ball Fault of 60, and Rotor 

Fault of 60. Data Splitting for the induction motor fault detection task is presented in Table 5. During pre-

processing, collected data are normalized to a desired amplitude level. Then, the input acoustic signals are 

framed into short segments. The proposed feature extraction approach employs a frame step of 0.01 seconds, a 

50% overlap area, and a frame duration of 0.02 seconds. With a sampling rate of 44.1 kHz, 199 frames are 

obtained for the framed signal, which has a dimension of the framed signal (199 x 400), and subsequently, the 

framed signal is multiplied by the Hanning window function are described in Figure 6. MATLAB has been 

selected and used to implement the fault diagnosis system. The results were obtained using a PC with an intel 

core i5 8th generation CPU @ 1.60GHz, and 8 GB of RAM. 

Zero Crossing Rate (ZCR), Spectral Entropy (SE), and Energy Entropy (EE) feature vectors are concatenated, 

and the F1 feature vector is built and presented in Figure 1. Motor sound fault detection involves analyzing 

specific features in the sound emitted by induction motor to identify and diagnose potential issues.  

Table 5: Data splitting for induction motor fault detection 

 

 

In the test detection, the correlation algorithm is used to carry out the induction motor fault detection. An 

incoming test data of the audio sound file is first entered as one row in the testing feature section. Correlation 

between test data and successive rows of training features is calculated, producing three hundred different 

correlation values. In the detection section, a row with a high correlation value is chosen, its index displayed, 

and classified into class zero (indices 1 to 60) or class one (indices 61 to 300). Class zero is healthy (or) normal 

state of induction motor and class one is different types of faults (Inner Race Fault, Outer Race Fault, Ball Fault, 

and Rotor Fault). Correlation calculations are employed to assess the motor's condition status, and if a fault is 

Data Health Fault 

Train 60 240 

Test 20 80 

Total 80 320 
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detected, the system proceeds with feature extraction for fault localization. The extracted feature vector for the 

induction motor fault detection task is illustrated in Figure 11. 

 

Figure 11: The extracted feature vector for the induction motor fault detection 

In the test localization feature extraction section, MFCC (14 order) and GTCC features are fusion to construct 

the F2 feature are presented in Figure 1. This feature vector is used as training features data in machine learning 

algorithms. The extracted feature vector for the induction motor fault classification task is illustrated in Figure 

12. 

 

Figure 12: The extracted feature vector for the induction motor fault classification 

According to the experimental results, the dataset is divided into training and testing segments. If the induction 

motor's test signal is identified as being in a fault state during the testing phase, the localization section provides 

information about the particular fault type. The defect diagnosis system has been implemented using MATLAB. 

Figure 13 depicts the architecture and structure of the machine learning-based acoustic-based induction motor 

defect detection and classification system. 
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Figure 13: Design and implementation of fault detection and classification stage of the proposed system 

For performance evaluation of the induction motor fault detection system, before starting the experiment, the 

dataset was split into 75% training data and 25% testing data. Thus, 300 recordings, which include 60 healthy 

recordings and 240 different faulty recordings, are used as training data. And 100 recordings, which include 20 

healthy signals and 80 different faulty signals, are used as testing data are presented in Table 5.  

The performance evaluation of the proposed system is evaluated comparatively according to accuracy, 

precision, recall, and F1-score values calculated as given in Equations 20-23. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
∑𝑇𝑃+∑𝑇𝑁

∑𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 × 100             (20) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (%) =
∑𝑇𝑃

∑𝑇𝑃+∑𝐹𝑃
× 100                      (21) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑𝑇𝑃

∑𝑇𝑃+∑𝐹𝑁
× 100                                  (22) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                   (23) 

The proposed detection system's confusion matrix is shown in Figure 14, where 20 health state are accurately 

identified during the prediction process. One state is not recognized as fault, but the other 79 are accurately 

identified as fault states. 

 

 Figure 14: Confusion matrix of induction motor fault detection system  
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Figure 15 shows the evaluation results for the induction motor fault detection system. Experimentally, the 

system achieved an average accuracy of 99%, precision of 95.2381%, recall of 100%, and F1_score of 97.561%. 

The system's error rate is 1%. 

 

Figure 15: Performance evaluation of the induction motor fault detection system 

The dataset for the proposed localization model includes 320 recordings of different faulty motor sounds (Inner 

Race Fault, Outer Race Fault, Ball Fault, and Rotor Fault), split into 75% training (240 recordings) and 25% 

testing (80 recordings). Data Splitting for the induction motor fault localization task is presented in Table 6. The 

localization system, tested with Support Vector Machine (SVM) algorithms, has its confusion matrix shown in 

Figure 16. The model accurately classifies faulty signals using the SVM classifier, but one Outer Race fault and 

one Rotor fault are misclassified as Inner Race faults.  

Table 6: Data splitting for induction motor fault localization 

Fault Types 
Train Data 

(75%) 

Test Data 

(25%) 

Dataset for the proposed 

localization model 

Inner Race Fault   

 240 

 

80 

 

320 

Outer Race Fault 

Ball Fault 

Rotor Fault 

 

Figure 16: Confusion matrix of induction motor fault localization system 
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The performance evaluation of the proposed localization system provides a comprehensive performance 

analysis, demonstrating the system's overall effectiveness. According to experimental result, the system 

achieves an average accuracy of 97.5%, with precision, recall, and F1 scores of 97.73%, 97.5%, and 97.53%, 

respectively as shown in Figure 17. The system's error rate is 2.5%.  

 

Figure 17: Performance evaluation of the induction motor fault localization system 

5. Conclusion 

The paper proposes the use of an adaptive filtering algorithm for induction motor fault diagnosis system and a 

fusion-based feature extraction method using machine learning algorithms to improve the accuracy and 

efficiency of fault detection and localization systems. The induction motor fault detection and localization 

system have many challenges because acoustic signals contain many noises, such as motor vibration, wind 

effects, environmental noise, and vehicle noise. The NLMS filtering technique is adopted to address the above 

issues. This research paper demonstrates that combining multiple features from both time and frequency 

domains effectively captures different aspects of the data, improving the overall system accuracy. Additionally, 

it emphasizes the importance of selecting features using statistical methods and optimizing parameters to ensure 

system accuracy. And the proposed fusion-based method overcomes the challenging problem and gets better and 

more reliable accuracy for fault diagnosis systems. The study found that the proposed feature vectors achieve a 

better result with a correlation algorithm for fault detection and an SVM classifier for fault localization. 

According to the experimental results, the proposed system achieved an average accuracy of 99% in fault 

detection, 97.5% in fault localization, and an error rate of 2.5%. Therefore, the proposed system can be used in 

an early fault diagnosis system for induction motor and rotating machines. 
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