International Journal of Computer (1JC)
ISSN 2307-4523 (Print & Online)

https://ijcjournal.org/index.php/InternationallournalOfComputer/index

Optimizing Energy Efficiency on Task Allocation for
Cyber Foraging in a Transient Mobile Cloud System

Tiako Fani Ndambomve®*, Felicitas Mokom®, Kolyang Dina Taiwe®

acLaRI Lab, University of Maroua, P.O. Box 814 Maroua, Cameroon
abSchool of Information Technology, Catholic University Institute of Buea, P.O. Box 563 Buea, Cameroon
PIEEE Computational Intelligence Society Member,Association for Computing Machinery (ACM) Member
8Email: tiakofani@cuib-cameroon.net
PEmail: fmokom@cuib-cameroon.net

‘Email: dtaiwe@yahoo.fr

Abstract

In this research, we address the essential problem of achieving energy-efficient task allocation, which is a vital
building block of cyber foraging on a transient mobile cloud. The goal is to minimize the total energy consumption
for collaborative task executions among mobile devices in a multi-hop mesh network constructed on a mobile
agent-based framework. Accordingly, we propose an energy-efficient task allocation problem formulation that
takes into account the required restrictions. Next, we develop an optimal task allocation solution based on the
modification of the Kuhn-Munkres algorithm by leveraging on the structural properties of the problem. We further
evaluate the effectiveness of the suggested task allocation scheme through numerical study on a simulated system.
The simulation reveals a performance gain on energy consumption reduction over other widely used task
assignment algorithms.

Keywords: Transient mobile cloud; Multi-hop mesh network; Energy-efficient task allocation; Kuhn-Munkres
algorithm; Mobile agent-based framework.

Received: 6/27/2024
Accepted: 8/27/2024
Published: 9/5/2024

* Corresponding author.

123

mailto:tiakofani@cuib-cameroon.net
mailto:fmokom@cuib0cameroon.net
mailto:dtaiwe@yahoo.fr

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

1. Introduction

With their ever-evolving capabilities, mobile devices are now able to access an incredible amount of data and
information via apps, email, computations and storage on-the-go, with the concept of Mobile Cloud Computing
(MCC). The advent of mobile cloud computing has paved the way for quicker, more affordable solutions that
provide security and flexibility. Huawei envisions that by 2025, the number of terminal devices connected to the
Internet will be close to 100 billion, and a large majority of these devices will be mobile phones [1]. This reveals
the prominent need for Mobile Cloud Computing as it enables users to work more effectively, given that mobile
devices are still limited in compute and energy resources [2], so much so that they are unable to completely execute

computation intensive applications on their own.

Among the various types of MCC are Transient Mobile Clouds (TMC) [3]. These are temporal clouds that enable
nearby mobile devices to form an ad hoc network and advertise their capabilities as cloud services. This is
achieved by leveraging the idle resources of nearby mobile devices (processing, storage, and communication),
creating a distributed cloud infrastructure that can be used to deliver services to users [4]. These services can be
offered to other devices in the temporary smartphones ad hoc network. One of the main advantages of transient
mobile clouds is that they can be set up quickly and easily, without the need for a central cloud infrastructure or
a fixed network. This makes them particularly useful in situations where traditional cloud computing may not be
available or feasible, such as in remote locations, crowded areas with limited connectivity, or during disasters [9].
Meanwhile, their main disadvantage is the ephemeral nature of the cloud structure, given that it often changes due
to the mobile devices entering and leaving the network [5]. Transient mobile clouds can be used to provide a
variety of services, including temporal data storage, content distribution, and computation offloading. They can
also be used to improve the performance of existing cloud services by providing additional resources or by caching
frequently used data. Furthermore, because the mobile devices are close to one another in a geographically
constrained environment, they are more likely to share interests and have social and context awareness, which is
useful for a variety of applications [4]. This awareness is more difficult to use with distant clouds. By utilizing the
collective resources of the group, devices are no longer constrained by their local hardware and software
capabilities. TMC systems harness the ubiquitous nature of mobile devices along with their ever-increasing sets
of capabilities in providing a rich computing platform. Overall, transient mobile clouds are an innovative approach
to cloud computing that leverages the resources of mobile devices to create a flexible and dynamic cloud
infrastructure.Among the various services provided by transient mobile clouds, Computation Offloading is a key
activity. It seeks to increase the functionality of mobile systems by sending some of the computational work to
distant devices in the cloud network. This process is carried out by assigning a part of the mobile devices' tasks,
distributing them through the network and running them on the assigned devices [6]. We focus our interest on
Task assignment, which is a well-studied problem with many proposed algorithms [7 - 16]. In these algorithms,
each device provides a cost estimate for each task it can run. The aim of a task assignment algorithm is to find the
assignment with the lowest overall cost in time and/or energy consumption. This will permit the requesting device
to execute most of its tasks efficiently without depending on Internet resources. Therefore, designing efficient
task assignment strategies is one of the ways to enhance the computation offloading experience of mobile users

in the Transient mobile cloud systems.

124

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

2. Overview of Techniques Related to Transient Mobile Clouds

Transient mobile clouds have the potential to alleviate the internet connectivity delay present in most MCC
solutions, and more precisely Mobile Edge Cloud Computing solutions, through the creation of an ad hoc network
by nearby edge devices [17] and the subsequent offloading of some tasks (Cyber Foraging) to selected devices.
Substantial study has been done in the field of transient mobile clouds as a result of the recent major increases in
the numbers, kinds, and capabilities of mobile devices [20 - 25]. For this purpose, three aspects are considered in

setting up these clouds: Network architecture, Code partitioning and offloading, Tasks scheduling mechanisms.

2.1 Network architecture

Transient mobile clouds currently have a number of restrictions that relate to their growth on a local network with
a high number of devices and the control of the network instability brought on by the constant mobility of the
devices. Given that a considerable quantity of mobile devices is needed to constitute an efficient cloud system,
the authors in [26] argued that setting the devices into a multi-hop ad-hoc network will permit to have access to
greater resources even in case the devices requested to serve are very distant from the requesting device. Terry
Penner [20] designed a framework for Assignment and Collaborative Execution of Tasks on Mobile Devices in a
Transient Cloud. That cloud utilizes the collective capabilities of the devices present, along with their social and
context awareness, and that cannot be provided efficiently by the traditional clouds. In [24], they provided a real
implementation on the Android platform using the Wi-Fi Direct framework. However, the work had the following

limitations as per the network architecture:

o In Wi-Fi Direct, only one device (called the Group Owner) acts as a router, and all of the other peer devices
that connect to it create a single hop network. Also, any device in a group can only be a client in another
group. However, this limits the possibility of expansion of the network and the size of the network to be
a maximum of one hop from the Group Owner.

o Secondly, because of the fact that every device must connect to the Group Owner, a significant disadvantage
is that if the Group Owner leaves, the group is torn down and a new group must be established from
scratch. This makes Wi-Fi Direct unsuitable as a basis for multi-hop networking.

o Thirdly, the group owner is the hub device of the network that is responsible for maintaining the network’s
state and it needs to have a stable connection with the client devices in the network to route tasks (code)

and data.

Therefore, their solution may hardly work on a multi-hop ad-hoc (mesh) network (MANET) with a very unstable
connectivity between devices, which is normally the typical network for a realistic Transient Cloud [18].
Meanwhile, it is crucial to consider this network topology and its characteristics to produce an application

framework which responds to the needs and the features of the TMC structure.

Having adopted a multi-hop mesh network for the transient cloud, there is need to adapt to it a protocol that require
minimal memory for routing table, less computing resources and generate less protocol control overhead, given

the limited resources on mobile devices. The latest amendment of the 802.11 standard [28] provides the

125

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

Independent Basic Service Set (IBSS) mode that can be used for ad-hoc networking. It is commonly referred to
as ad-hoc mode because it does not require any infrastructure to be in place. It can be used as a basis for mesh
networking. In this mode, all nodes play similar roles, and any node can communicate directly with any other
node within the network, as those nodes are also set to the IBSS mode, share the same Service Set Identifier
(SSID) and are within its radio range. The IBSS mode itself, however, does not offer multi-hop capabilities. There
is no provision for path discovery and selection, nor for relaying packets to nodes out of the radio range of the
sender. In IBSS-based ad-hoc networks, these functions must be accomplished by an additional protocol, like
BATMAN [27], usually at the network layer. Among all the existing protocols for MANETS, the Better Approach
to Mobile Ad-hoc Network protocol (BATMAN) is used more often, reason being that it does not need to maintain
full path to the destinations. Each node only collects and maintains the information about the best next hop towards
all other nodes in the network. Every node collects this information through hello packets broadcast periodically.
This makes the protocol suitable for storage constrained devices. Also, since this protocol depends only on hello
packets to know the availability of nodes and does not broadcast topology change messages, the control overhead
is low. For the purpose of this work, we have built a TMC simulation based on the BATMAN protocol on Repast
Symphony. In the Figure 1 for example, we considered 14 devices that are constituted into a TMC network through
the BATMAN protocol. Here, a device has access to other devices via a direct connection or a multi-hop (indirect)
connection, and every connection may have a weight wj that represents the communication cost between the

devices Di and D;.

Figure 1: Devices constituting a Multi-Hop Mesh Network using the BATMAN protocol

2.2 Code partitioning and offloading

Code partitioning and offloading constitute another issue on Transient mobile clouds [17] and they need to be
properly addressed to match the requirements of such clouds set up on a multi-hop mesh network, otherwise the

distributed computing process will be hardly effective for the Transient mobile Cloud.

126

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

2.2.1 Code partitioning

With respect to code partitioning, there are several approaches. Bowen and his colleagues. [3] proposed a
taxonomy of these approaches based on their strategies to break out application execution components into non-
offloadable and offloadable modules. A partitioning algorithm could be classified into either of two categories
[29, 30]: (1) static: when it is fixed at development phase based on the static analyzer and dynamic profiling; and
(2) dynamic: when it includes runtime information from different profilers, log files, and the interaction among
components of the running application. Therefore, static approaches are often based on pre-specified annotation
where developers annotate the candidate methods for offloading and leave the remaining to the framework. While
the resulting partitions of static algorithms do not change in all executions, those of dynamic algorithms could be
updated before each execution to adapt to environmental conditions and optimize offloading objectives. Because
of that, though dynamic algorithms may have high overhead during the offloading process, we still opt for using
a dynamic approach with Operating System (OS) partitioning considering the various and changing capabilities

of the devices in the transient cloud and instability of the network structure.

2.2.2 Code offloading

One of the most typical methods to analyze and model code offloading for an application running on a smartphone
is to use its call graph as generated by the OS, which is a Directed Acyclic Graph (DAG), that represents the
relationship between the computational components of that application [6, 31, 32]. Normally, the nodes of the
graph represent the procedures/functions of a program and the directed edges represent the
communication/invocations dependency between them, as shown in Figure 2. Here, two dependency levels can
be identified. A module cannot be executed until the execution of its parents is completed. On the other hand, all
the modules in the same dependency level can be executed in parallel. The operating system on the smartphone
generates this DAG for the application with each of the nodes (processing block) being light enough to be easily
transported through the MANET and to be quickly executed. Furthermore, advanced analysis on the DAG can
permit to group the modules into two parts: one part which is to run locally and the other part which is to be
offloaded to the TMC devices. For example, some processing blocks with special hardware needs, such as camera,

accelerometer, etc. should be running locally, while the blocks that need more of computation are offloaded.

@

v

Figure 2: DAG with two identified dependency levels

In [26], the study presents a transitory cloud-based framework that makes use of multi-agent systems to enable
dynamic code offloading as well as to make it easier for an individual code block to be packaged in a Mobile

Agent (MA), to travel around and be executed on one or more devices in the network. In Figure 1, under various

127

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

conditions, D1 may offload a task for execution to D7 by packaging it in a MA. That agent can hop through Dus,
D12, D13 to get to its destination; this depending on whether a route to D7 was recorded during the establishment
of the network. Upon arrival at D7, if the task in the MA does not complete its execution there, it is repackaged in
a MA alongside its current status and offloaded again to another device. It continues like that till the task is
completed and returns to its origin. Therefore, as the number of hops and transitions of the MA increases, the
communication cost and the energy consumed increase likewise. We adopt this multi-agent system strategy as
presented in [26]. When designed and implemented, these intelligent mobile agents would work alone or with

others, to successfully adapt to the frequent arrival and departure of devices in and out of the network [33, 34].

2.2.3 Offloading Decision

In considering a user application as a set of M processes forming a DAG, all the processes in the same dependency
level can be executed in parallel. As such, the process that takes most time for execution ultimately gives the level
execution time as it covers the execution time of all the processes in that level. Hence, greater number of processes
in a dependency level decreases the overall execution time of the application. The total execution time of the
application is the summation of execution times of all the levels and data transmission times between the modules.
To determine the appropriate devices for the offloaded execution, given that the total execution time of the
offloaded processes helps to define the performance of the TMC System, the receiving devices must have to fulfill
the selection criteria. These criteria consider the computation power, energy, data rate, the memory usage and the
disk usage and associativity time [39]. In several approaches [35,38], a device will be selected as a receiver if it
can execute the task in less time compared to the sender device and it maintains a minimum data-rate with the
sender. Moreover, it must have sufficient energy to execute the task and send the result back to the sender. During
this execution and communication time, the two devices remain connected. However, this will not be suitable for
this transient mobile cloud given that the devices are not necessarily directly connected to each other in the multi-
hop mesh and they may move out of the network due their mobility.In our approach based on [26], each device,
through its MAZ, is responsible for maintaining the list of resources available on other devices it knows in the
whole network (by a direct or indirect link given that it is a multi-hop mesh network). Some resources that are
monitored here are the network bandwidth, the processor usage, the queuing delay. In our framework, each device
monitors these three resources to make sure it has the latest usage information of other devices. In this regard, for
the amount of energy, we consider a threshold value that needs to be available on a mobile device before it can
receive an offloaded task, so that the device can still run its own compulsory activities (the minimal level of energy
present on a device that exempts it from participating in the Transient cloud). In the same light, we may also
consider a threshold for the amount of memory. With this information, each mobile device can make allocation
decisions locally. Also, the queuing delay of a mobile device is frequently updated whenever a new task is
received, so each mobile device has to periodically broadcast its queuing delay to inform all the devices of its
status. By increasing the frequency of broadcast, the information collected by the tasks’ generators will be more
accurate. Then, the MAZ on the sender will most likely make good allocation decisions, but at the cost of more

control message overhead.

The authors in [12] state that for offloading to be effective, the computation part of program must be significantly

larger than its communication part. This implies that when one uses cyber foraging to improve response time or

128

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

energy consumption, the offloading mechanism would be more effective for applications requiring more
computation than communication. We illustrate a simple flowchart of cyber foraging on a requesting device in
our TMC (See Figure 3). Therefore, large tasks requiring higher execution times make offloading more effective
because the benefits of computation on a more powerful and faster surrogate outweigh the cost of communication.
However, the constraints on mobile devices are due to their mobility as it restricts the size of tasks to be offloaded
[18, 26, 32]. That is, if a task is too large to complete its execution before leaving the area in the networking
coverage of a surrogate, offloading becomes very complex and time-consuming solutions such as check pointing
and process migration would often be used. Therefore, a suitable offloading approach must specially consider the
mobility nature of mobile devices and manage a trade-off between mobility and task size. We introduce a hand-
over strategy to further manage this trade-off. In this scenario therefore, the user might prefer to lower the bar of
latency and constraints to favor general/local energy savings, as it is the case in our work. Also, in the TMC
system we propose, the time and the energy spent for one task is the sum of the time and energy on each transition

point (surrogate device) added to the communication time between transited surrogates in the network.

Resources
available are

—.L£1_t_un

Neighbouring
device

eloadn

Network L
Yes
/ Bandwidth + es
Partition DAG tasks Exclude tasks
Processor based on number of for local
llsane - -
Queuing

Assign task to best

Delav surroaates

/s)/

Distant Local Execution

surrogate

Yes
Execution
completed Offloaded
~ Execution
thraiinh NMAc .

Ves Transitresults | | Merge End
A to request result

Aaviira tn N Ac

Figure 3: Flowchart of cyber foraging on a requesting device in the TMC system

129

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

2.3Tasks scheduling mechanisms

When energy efficiency is taken into account, task scheduling becomes much more complicated but crucial.
Execution overhead and scalability are major concerns in current research on energy-efficient task scheduling [7].
Because the cloud nodes need to respond quickly to real-time tasks and ensure the mobility management of nodes
at the same time, the optimal task scheduling strategy needs to be selected to meet the low latency requirements
of users. Also, based on the needs and the features of the TMC system, the algorithm for task assignment and
execution should be derived to align with the framework described in [26], while taking into account some
constraint conditions such as response time deadline, dependency between task, data transmission and energy
cost. Actually, the objective of Task allocation scheme is to select an appropriate node for execution of a task as
aiming to reduce time and/or energy consumption. The task allocation process usually consists of two steps: (1)
Selection of nodes on which estimated task execution time is less than the task deadline and (2) Given the list of
nodes selected in (1), allocate a task to a node on which estimated energy consumption is minimum. To estimate
task execution time and energy consumption, models proposed in [31, 32, 40, 41] have been readjusted to the

TMC context in view of the above problems. We present them in Section 3 below.

In a nutshell, as presented in Figure 4, the user application plane builds the various tasks partitions, the framework
plane packages the tasks in MAs and allocates them and finally the MAs are distributed to various devices over

the network. Results of tasks are received via the planes in the reversed order, back to the user application.

3
PLANE 3: User Application partitions constituted as a DAG by
the OS
J
S

PLANE 2: Proposed framework managed by the MAZ that
packages tasks into MA and allocate to various devices

J
N\

PLANE 1: Multi-Hop Mesh Network over the BATMAN
protocol

Figure 4: Stack Approach to tasks allocation and Execution on a TMC system

3. Formulation of the Task Execution Problem

As a global perspective, we first introduce the model to describe the resources of a TMC device for mobile task
processing as follows. We consider the connectivity graph G1 = {N, E}, where the set of devices N is the vertex
setand E = {(i,j) : ej = 1, Vi, j € N} is the edge set where ej; = 1 if devices i and j can establish a direct link

between themselves in the multi-hop mesh network.

3.1Evaluating Energy Consumption

The computation cost constitutes the energy required by a given task to process on various devices. The

communication cost is the energy required for transferring the agent, its data and control information between the

130

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

mobile devices in the TMC System and then, the resulting data sent back to requesting device. Therefore, we have

the considerations below.

For a given mobile node n; that has been partitioned into tasks to execute either onsite or otherwise, we consider

the following elements and their notations:

{Ni} = {Ni}a U {Ni}u. This is the set of n mobile nodes (devices) known by ni in the TMC.

The set of mobile nodes can be seen as a union of the sender node n;, the set {Ni}a of devices to which tasks of n;

have been allocated and the set {Ni}u of devices unused by tasks of n;.

{Ti} = {Ti}o U {Ti}L with {Ti}o = {Ti}par U {Ti}seq. It is the set of m tasks of a given node n;.

This set can be seen as the union of the set {Ti}. of tasks that are executed locally and the set {Ti}, of tasks that
offloaded through agents. This later set is grouped into tasks that are executed parallelly in {Ti}par and others that

are executed sequentially in {Ti}seq as denoted by the operating system.

The device n;has its CPU working frequency Wi (the total computation capacity in CPU cycles per unit time). Let
i be the current load of node n; (the percentage of currently occupied processing capacity) since device i may
have some background load and/or run some unoffloadable tasks. Then the available processing capacity of n; is
Ci = (1-pi)Wi. With this note, we have the considerations given in Table 1.

Table 1: Parameters considered for the TMC system

Parameter Description

Dj Data Rate from n;to n; over the network

ai: Processing Energy Consumption on n; per time unit;

bi : Transmission Energy Consumption on n; per time unit;
P«(n) : Transmission power of n;;

Pr(ny): Reception Power of n;

B;: Average bandwidth on node n;

B Factor of the throughput and packet loss

For a given tk(ni) (task k of node ni)

li : Input data size of task k

Oik : Output data size of task k

Sk : Size of task k (amount of required computing)
Qik : Queuing delay of task k

3.1.1 Local Execution of a given task k on a node ni

Execution Time: ETS, = %" + Qi (1)
L

131

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

Energy used during Computation: ECf, = a,ETS, (2)

Time spent for data communication (given that the task may require some input data or send some output through
the network):

DTj, =2 4 3
Energy used during Data communication: EC%, = a;DTS 4)
Total Energy Consumption for the execution of task k locally on a given node: EC};, = ECS + EC (5)

3.1.2 Offloaded Execution of task k of node n; in an agent

N{[t,] is the ordered set of all the nodes n; that the MA having task k goes through in order to complete its

execution after leaving the node n;. Therefore, {N}a = Uj;_; NIt 1. (6)

Supposing that to get to a node n;, the MA hops through the nodes {nas, nay, ..., nac}as determined by the BATMAN
protocol, we have that the energy used for the data transfer of the agent having task k from n; through various n;
nodes is:

) Pe(na)+pr(naz) Pt(na2)+pr(na1) o (PeaRd o)) o pemptor(haK) o)
EC”k Z]E{N[tk]} {(Da1az I + Daza1 0 > + + (DAk’j Ilk + Dj'Ak Olk (7)

The energy used to execute the offloaded agent’s task through various n;j nodes is:

Sike 1ij+0
ECH = Xjemvit < £+ by SIS Lk)) (8)

J D] next
where next indicates the succeeding device on the route back to n; to deliver the output.

The time used for executing the offloaded agent’s task is:

S, ik +0ik)
ETl]k _Z]E{N[tk <L]k+ e @ +sz) (9)

Djnext
where next indicates the succeeding device on the route back to n; to deliver the output.
The total energy needed for the offloaded agent having task k from n; through various n;j nodes is
ECPy = ECEy + ECy . (10)
The total energy needed for all the tasks of ni: EC(n;) = Epare + EI + Emerging + Strerry,(EClx) +

ZtkE{T}O,njE{N}A(ECi(}k) (11)

132

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

where EI = pjgie X ZtkE{T}o,nje{N}A ETfk — ai X ey (E Tk (12);

with El being the energy spent by node n; when it is idle, that is the amount of energy spent on locally executed
tasks subtracted to the amount of energy it saves on offloaded tasks. Ey,q, is the energy used to partition the
application into tasks according to its DAG. Epe,ging i the energy used to merge the results of various tasks

executions. These last two values can be approximated during the simulation.

The total time needed for all the tasks of n; to complete their execution;

ET(ni) = ZtkE{T}l(ETilik) + Ztke{T}seq (ETl’?k) + MaxtkE{T}par (ETi?k) (13)
where n; € {N}4
3.2Mathematical model of the energy minimization problem

By taking into account the above formulations, our objective is to minimize the overall energy consumption of
the task executions by all the devices n;, which is formally described as follows:

min i 2l AincE Gl + (1= Ag) Tiey js Tty Ay ECGe (14)
OVer X;
subject to the constraints:
ik =0, vejj €E, Yk €M (15)
Y jen dijk = €, Vi EN, Yk €M (16)

Yiendik <1, Vj €EN, vk eM a7

/lijk E{O,l} (18)
x; €[1,m] (19)
X= 5, ieN (20)

Where,

&i : binary indicator that is 1 if device i has a task to be executed and 0 otherwise

Aij : binary decision variable for task allocation, which is 1 if the task k of device i is offloaded to execute on

device j and 0 otherwise (A local execution on device i).

m; - Number of tasks generated by the DAG on Device i

133

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

Constraint (15) warrants that the task allocations are determined according to the feasible TMC connectivity.
Constraint (16) denotes that if a device has an offloadable task, this task should be assigned.

Constraint (17) denotes that during a task offloading round a device will execute at most one task at a time (which

could either be its own task or an offloaded task from a nearby device).

Constraint (18) follows from the context.

Constraint (19) denotes the tasks to be executed locally on each device i.

Constraint (20) denotes the number of locally executed tasks in the whole TMC system.
3.3 Adapted Kuhn-Munkres (Hungarian) Method for Optimal Task Assignment

We next propose the optimal solution for the problem in section 3.2 via a task assignment policy. At first glance,
one might regard this optimization problem as the classical NP-hard task allocation problem, meaning that finding
and concluding the best answer in a finite period is practically impossible [30, 42]. It has been demonstrated in
the literature, that this kind of task allocation problem can be solved optimally using the Kuhn-Munkres
(Hungarian) method [5, 25, 35]. It is one of the methods used in assigning tasks to each worker device in the
system that achieves an optimal assignment in which the aggregate cost is minimized, and whereby every task
must be assigned to only one device. It considers a bipartite graph for the possible allocations (See Figure 5 (),
derived from a 2-dimensional square matrix (See Figure 5 (b)) in which the rows Di represent the devices and the
columns Ti represent the tasks. An entry cij denotes the cost of assigning task j to device i. Its running complexity
is O(n%), where n is the number of tasks, and equal to the number of worker devices.

) ()

Dl

na

&>

(@)

Cij | T1|T2| T3
D1|5 |8 |6
D2 |7 |9 |7
D3 |6 |4 |4

(b)

Figure 5: (a) A bipartite graph of all possible allocations, (b) A matrix of edge weights

134

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

However, when dealing with a TMC system, there often arise the need to manage more tasks than devices at a
time, and then more devices than tasks at another time. It varies based on tasks that complete their execution,
devices that run out of resources and/or, devices that move into or out of the transient cloud. In those situations,
we may want to assign multiple tasks to the same device, or a device might not be assigned any task. Therefore,
unlike the Classical Hungarian method, it is clearly important for the assignment algorithm to achieve certain
properties such as load balancing and/or collocating tasks. Hence, we propose a modification to the Hungarian

method to make it suitable for TMC systems.
3.3.1 Cost allocation in the graph for a given device

The Hungarian algorithm assumes the existence of a bipartite graph, G2 = {D, T, E} where D is the set of devices
that the sender has access to through the network, T is the set of offloadable tasks of the sender, and E is the set
of edges. The edge weights may be stored in a matrix. Given that each device runs the allocation scheme for the
tasks it has, the devices it can access and on the basis of the data it has gathered in the TMC system, this matrix

is built in the algorithm according to the following cases:

Case 1: To indicate that the device i can do a local allocation of the task, for an edge that connects device i to its
own tasks, we set the weight ci =E C},.. This means that for a device i running the allocation scheme, row i will
have the energy consumption of local execution for each corresponding offloadable task of this device.

Case 2: For an edge that connects tasks of device i with another device j, we set the weight cjc = EC3;.. This means
that for a device i, row j will have the energy consumption of offloaded execution from device i to device j for

each corresponding offloadable task of the device i.

Case 3: If the number of tasks is less than the number of devices, some of them cannot be assigned any job, so
that we have to introduce one or more dummy tasks of size zero to convert the unbalanced assignment problem
to the balanced assignment problem that can now be solved classically. The devices assigned with the dummy

tasks are assigned are then left out of the final result.

Case 4: If the number of tasks is more than the number of devices, some of them cannot be assigned any device.
However, if we introduce one or more dummy devices to balance the problem, the assignment algorithm will
cause the starvation of larger tasks. Therefore, we rather iteratively select an equal number of tasks to assign to
the devices until all tasks are assigned. The selection may be based on the priority given by the queuing delay, the

level of dependency in the DAG, the remaining time for the connection due to the mobility.

Case 5 (Load Balancing): If a task has already been assigned to a given device j, device i should have the ability
to inflate the costs of other tasks by some factor (i.e., multiply the weight on already assigned devices by 2) when
considering device j again for the assignment. This is in other to avoid overworking and congestion, long waiting

time, and even distribution of tasks.

135

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

3.3.2 The modified algorithm

Here, we modify the Hungarian Algorithm on a bipartite graph as proposed by [44, 45] for the reasons already

presented.

Adapted Hungarian Algorithm (AH Algo)

Given that the variables u; are assigned to each node d; and dual variables v; are assigned to each node t;, the

minimization of the assignment problem is feasible when u; + v; <c;;.

Input: A bipartite graph G2 ={D, T, E} (where [D]| =n, [T| = m) and an n x m matrix of edge costs C

Output: An optimum matching graph M

Let n = number of devices (nodes) and m the number of agents

If m >=n then do

r €n

While (r>=0 and m>=n) do

Select n tasks according to Case 4

Run the AssignTask() algorithm for the n tasks and n nodes

Remove from A the agents that have been assigned

Run Case 5 for Load Balancing

m €m-n, r €m%n

Endwhile

Run the AssignTask() algorithm for the r tasks and n nodes according to Case 3

Else Run the AssignTask() algorithm for the m tasks and n nodes according to Case 3

AssignTask():

Let g = min (n,m)

1. Perform initialization of the matching:

136

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

(a) Begin with an empty matching, Mo = &

(b) Assign feasible values to the dual variables ai and v; as follows:
Vdi €N, ui=0, vt €T, vj=mini(ci)

2. Perform ¢ stages of the section in Phase.

3. Output the matching after the g stage: M = M.

Phase:

An alternating path: a path through the graph such that each matched edge is followed by an unmatched edge

and vice-versa
An augmenting path: an alternating path that begins and ends with an exposed node.
A Hungarian tree: All alternating paths originating from a given unmatched node.

Searching for an augmenting path in a graph involves exploring these alternating paths in a breadth-first manner,

and the process can be called growing a Hungarian tree.
An Equity Graph is made up of edges where u; + v; = Cjj.
1. Designate each free (unmatched) node in N as the root of a Hungarian tree.

2. Grow the Hungarian trees rooted at the free nodes in the equality subgraph. Designate the indices i of nodes
di encountered in the Hungarian tree by the set I %, and the indices j of nodes tj encountered in the Hungarian tree
by the set J* Go to step(4) if an augmenting path is found. Otherwise, if the Hungarian trees cannot be grown

further, continue to step(3).

3. Modify the dual variables u and v as follows to add new edges to the equality subgraph. Then resume step(2)

to continue the search for an augmenting path with
0 = 1/2 min (cij - Ui - Vj), IE 1 #, JE I *

Ui—ui + O ifiel+and Uj«—ui — Oif i&
Vi—v—0ifjedxand vj— v + 0if j& I *

4. Augment the current matching by exchanging matched edges with unmatched edges along the selected
augmenting path. That is, M (the new matching at stage k) is given by (My—; — P) U (P — Mj—;), where M;—; is the

matching from the previous stage and P is the set of edges on the selected augmenting path.

137

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

3.3.3 Dynamic Reallocation of tasks

Given the plausible unpredictability of user mobility and the variability of devices’ resources states, optimal
allocation decisions must be made dynamically at runtime in order to adapt to new conditions and so on. Mobility
alone will cause the quick change of some costs cjj in the matrix for the mobile devices (workers) that move.
Therefore, dynamic reallocation seems more appropriate, but it has an associated higher communication overhead,
which should be taken under control [46, 47]. In the Adapted Hungarian Algorithm used here, the costs on a given
column or row is updated in the matching matrix. In this case, if a change happens on a device, there is no need
to restart the algorithm from start, since the current matrix represents the optimal assignment before the change
of costs in one node. It is then more effective to use the Dynamic Hungarian algorithm proposed by [48]. It uses
the current optimal assignment matrix to produce a new complete matching matrix M representing an optimal

solution to the problem with the changed edge costs.

Optimized Version of the algorithm to integrate dynamic reallocation (Dynamic_Hungarian)

Input:

* An optimal solution to the above assignment problem, comprising a complete matching M +, and the final values

of all dual variables ui and vj .

* k cost changes, each of which can be a row i*, a column j or a single entry ci # * of the cost matrix.

Output:

A new complete matching, M, representing an optimal solution to the problem with the changed edge costs.

Perform initialization: For each of the k cost changes

* If a single value ci+ = of the cost matrix changed from cold to cnew:

(a) If cnew > cold and di = is matched to tj#, then remove the edge (di#, tj=) from the matching M =,

(b) Otherwise, if cnew < cold and uj = + vi* > cnew

— Assign uj*=minj (ci¥ — vi)

— If di=is not matched to tj*, remove the edge (di =, mate(di=)) from the matching M=

[Note: We may stochastically decide to modify di * rather than tj = in this case. If tj = is modified, then the edge

(mate(tj #), tj#) should be removed from the matching instead of (di =, mate(di #))] .

* Otherwise, if a row i+ of the cost matrix changed:

138

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

(a) If di+is matched, remove the edge (di+, mate(di=)) from the matching M.
(b) Assign uix*= minj (ci¥ — vj)
* Otherwise, if a column j * of the cost matrix changed:
(a) If tj = is matched, remove the edge (mate(tj), tj =) from the matching M.
(b) Assign vj+ = mini(cij* — ui)

2. Let k= be the number of edges removed from the matching in the initialization phase of the algorithm (note k *
<k). Perform k= iterations of Phase from the AH_Algo.

Output the resulting matching M.
3.3.4 Evaluating the Send_Over benchmark for a given agent hosting task Tk originating from a node ni

With the continual movement of the mobile users and the progressive change of status of the resources in the
devices over time, the costs cij may change often, and this even faster if the connected devices move in divergent
directions or out of reach. For this reason, there is need to check at every time slice Ts, the devices that have
received offloaded agents and to measure the remaining connection time T¢ on the links that they have in the
network. We have that: Tc = (D-Dims)/Sm, Dms = C * Trrr, C =300 * 10% m/s, with D: Max Distance Coverage
Range of the Wifi = [80 — 200]m (in practice), Dms : Average sampling distance between 2 given devices, TrrT :

Round Trip Time interval, C: Standard speed of the wave, Sm : Current Speed of the device.

An agent executes its tasks on a device as long as that device has sufficient resources and the connection time is
valuable. When the conditions of execution are no longer satisfactory, the agent needs to move to another device
on the basis of the allocation algorithm. Here, we consider the energy level of the device measured at every time
slice Ts and the connection time, in order to determine the Send_Over benchmark (which is the threshold for the
agent to move to another device). The lowest limit energy level for any device to be considered for participation
in the network may be 40%. As indicated in Table 2, we consider 2 metrics (Contact Time, Energy used) measured

for every time period Ts to decide on the Send_Over of the agent concerned (see line 1 to line 4). For this purpose,

we assume some practical values including T, = ET(n;) X %,with d =In(b) + In(T,) .

139

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

Table 2: Metrics used for the Send_Over

Energy Consumed Connection Time Send_Over Benchmark
1) Low | Average High Low
2) Low | Average
3) Low | Average | High | Average Average
4) High
Low High
Low I Average | High High
Low = [0,25] | Low = [0, Ts + 5]
Average = [25,50[| Average =[Ts+5, T+ 10[
High =[50, ---[High = [T« + 10, ---[
E_Level Energy Level in the Battery (%0)
Threshold Low Average High
40 41- 60 61-80 81- 100

To design the Send_Over algorithm, we consider the following values:

Tre: Remaining Time to avail the Service

Elevel : Energy Level in the Battery

Ts : Time slice after which connection time and energy used is measured

SS: Average received signal strength = AVGie s RSSI[i]

RSSI[1.,..., i] : Array of signal strength values collected overtime interval Ts.

Essentially, the Send_Over is triggered when its benchmark is high. However, If Send_Over benchmark = Average

and E_Level = low and SS < SS and T >T ,then Send_Over is equally triggered.
Threshold rt c

Send_Over Algorithm

Input:

Agent id carrying Task k

Start:

Trt= Initial total Execution Time

While Tt> 0
ri
Fori€1, T Measure RSSI[i]
)

Compute Energy level, SS, Contact Time

Get Send_Over_Benchmark

If (Send_Over = High) and (SS < SS ‘/ then AH_Algo()
Threshol

Elself (Send_Over = Average) and ((E_Level = Low) or (SS < SSTmshoh/) and (T t> Tc) then AH_Algo()

Else do nothing
EndIF
EndWhile

140

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

4, Simulation and Results
4.1 General Considerations

To evaluate the effectiveness of the solution proposed, we implement a simulation environment suitable for this
framework’s setting with the help of mobile agents. We used the Repast Symphony 2.9.1 software which is an
agent-based modelling and simulation system. It is open source, mainly java-based, richly interactive, expert
focused. The operating environment is an Intel Core i5 with a 4.6 GHz CPU and 8 GB memory laptop. We initially
considered 20 devices (nodes) constituted into a TMC system as described above, and they are assumed to be
moving in and out of a 200 m long surface area at different positions. Given the simulation environment, we can
assign to all nodes the same battery level and enough energy to run the whole experiment as these deplete over
time. We considered a threshold for the amount of energy that needs to be available on a mobile device before it
can receive an offloaded task, so that the device can still run its own compulsory activities (the minimal level of
energy needed for a device to participate in the system). We applied the Random Gauss-Markov (RGM) [3] model
which is often used in modelling mobility for mobile cloud augmentation. RGM moves a mobile node in time
intervals, such that, at each time interval, the next location dnext and speed Snex: are calculated based on its current

location dyre and speed Syre . We have that:

Snext = ASpre + (1 - a)savg + ; (1 - az)sran and dnext = adpre + (1 - a)dtwg + 2\/ (1 - az)dran

where « is the tuning parameter to vary the randomness. Savg, davg represent the mean values, and Sran, dran are two
random variables from a Gaussian distribution. RGM avoids the sudden change of direction issue by letting past
states influence future states.

Every node generates its own DAG of maximum 20 tasks independently following a Poisson arrival process.
Task characteristics (i.e., complexity, data size, etc.) are selected randomly within the range of chosen max values.
For example, we may vary the task sizes from 0 MFLOP to 60 MFLOP and the input data sizes from 0 to 20MB.

Other important simulation parameters used for the devices are given in the Table 3.

Table 3: Simulation Parameters

Parameters Max Values
Transmission power 100 MW
Reception power 25 MW

CPU processing capacity | 1.5 GHz

Data transmission rate 20 Mbps
Bandwidth 20 MHz

Using this mobile agent simulator, we constructed a prototype, while considering the characteristic values of the
network protocol (BATMAN), to represent all the components of the 3 planes designated in Figure 5. This

prototype was implemented with over 7000 lines of code in Java.

141

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

Figure 5 (a) shows a view of the mobile devices (blue dots), their agents moving towards the devices where they
have been assigned (red stars) and the green arrows shows the link between a device and the agents carrying its
tasks. Figure 5 (b) illustrates the variability of the speeds of the devices as they move. Every device runs the
AH_Algo as it starts the allocation of its tasks. Once this is done, during its movement, it will run the
Dynamic_Hungarian algorithm in order to manage the few changes in cost. If a device is getting out of reach, it
will run the Send_over algorithm. To handle cases of packet loss, after a required execution and transfer time,
supplemented by an average delay rate, if a given agent has not returned to the sender with a result, the MAZ may

resend an agent with the same information for re-execution especially if the priority of the tasks hosted in it was

critical.
» = - Speed Count
L
* *
- - * »
ok K
*‘ ,iv e
A
T
)
g0
w
* =
- * 515
l'- ' n
w 10
-
o 5
hd
fo 0
* 0 10 20 30 40 S50 60 70 80 90 100 110 120 130 140 150
Tick Count
* -
e 3
() (b)

Figure 5: (a) Simulation view of the devices and allocated agents (b) Variability of the devices’ speeds over

time

4.2 Performance Evaluation

In the simulation with 20 devices, about 300 tasks are generated and encapsulated in agents (see Figure 6 (a)). We
compare our updated Kuhn Munkres task assignment policy to three other schemes that are also used in these
scenarios: the Monge Kantarovich Algorithm, the MinMax algorithm and the Random Allocation algorithm. We
run 50 rounds of these task assignment schemes to obtain the average energy consumed up until the execution of
all the tasks. The feasible network connectivity among the devices also varies from round to round, which depends
on the devices’ positions while the users move. We depict the energy consumed of different schemes in Figure 6
(b). We observe that our proposed scheme (AH_Algo) can save sufficiently more energy compared to other
schemes. Also, with the AH_Algo, the tasks’ execution is completed on average a few time ticks earlier than with
the other schemes, considering the constraints depicted in the TMC system, as it stops increasing at time tick 569.
Furthermore, Figure 8 presents the average load balancing over the 20 devices, each having a number of tasks
allocated through a given scheme as listed in the table. We note that the AH_Algo is able to equitably manage the

load of tasks assigned to devices better than other schemes. These points demonstrate the superior performance

142

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

of our task allocation scheme for a TMC system.

M 14000000
S 12000000
' 0 =
£ g-moooooo
]
P 2 8000000
D s
g S 6000000
é‘ 8 4000000
()
o}
] £ 2000000
0
O NI OO A OO~ MO TN O AN LINDM
M NEAdmoOON OO0 A INmMOMMN O S o
A AN AN OMOOON T NDND O OO
0 50 100 150 200 250 300 330 400 430 500 550 600 Time Tick Count
Tick Count
e AH Alg0 === Monge_K emmm=MinMax e====Random

[P Count -+ M_Agert Count

@

Figure 6: (a) Devices and Mobile Agents count

(b)

(b) Average energy consumption in the whole system over

time per allocation scheme

7,000,000 |

6,000,000

5,000,000 1|

5 4,000,000 - |
7]
=
% 3,000,000

2,000,000

1,000,000

1]

8,000,000
7,000,000
6,000,000 1|

;5,000,000 ||

g

£ 4,000,000

[H
3,000,000 1|
2,000,000 1|

1,000,000

0

1S0 200 250 300 350 400 450 500 S50
Tick Count

50 100

@)

Figure 7: (a) Energy consumed with 15 devices

150 200 250 200 350
Tick Count

100

50

(b)

(b) Energy consumed with 20 devices

143

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

80 I I
gg‘l'"":lll‘l‘.l"l' i
(]

29 % B B % B B %t %t %t %o %t %t B Bt %t %t B %

30
20
10

0

dl d2 /d3 d4 d5 d6 d7 d8 d9 d10 di1l d12 di3 di4 di5 di16 di17 di18 d19 d20

mRandom 17 11 22 15 26 16 12 19 27 25 10 13 28 12 11 27 15 29 18 28
MinMax 19 18 20 18 18 22 21 18 20 17 20 19 17 20 16 18 17 22 23 21
HMonge K 18 20 19 17 21 19 20 19 19 20 19 18 19 21 22 20 18 20 22 20
BMAH_ Algo 18 19 20 21 20 20 22 21 20 19 18 20 18 19 20 19 23 19 21 18

HAH_Algo ® Monge_K MinMax HRandom

Figure 8: Load Balancing in Task Allocation on the devices

We equally examined the case of running the AH_Algo when there are more or less devices in the TMC system
to manage tasks. Figure 7 (a) represents the average energy consumed over time with 15 devices, and Figure 7 (b)
does same with 20 devices. We observe that the performance of our algorithm will slightly increase with
increasing number of users even for devices that has a high number of tasks. This can be seen in the fact that it
takes more time to execute those tasks with less devices though almost the same amount of energy is spent in both
cases. The reason is that a larger number of devices would enable a device to have more neighbors, and hence a
device can have more opportunities to offload the task to a suitable device and to execute more tasks parallelly.
This will decrease the number of idle devices, and hence promote the overall performance. However, the difficulty
is that when the TMC system expands, it has the tendency to increase the processing time because there are more
devices to consider for the task assignment.

5 Conclusion and Limitations

In this paper, we modeled the tasks allocation problem in TMC system as an energy consumption optimization
problem, while taking into account task dependency, data transmission and some constraint conditions such as
and cost. We further solved it using an adapted version of the Kuhn-Munkres (Hungarian) Algorithm to fit in the
mobile ad hoc cloud networking infrastructure described above. Furthermore, we have considered the
Dynamic_Allocation algorithm and proposed a Send_Over algorithm that permit to easily manage the change in
energy cost due to the constant movement of devices. A series of simulation experiments are conducted to evaluate
the performance of the algorithm and the results obtained are efficient and acceptable compared to what obtains
in other prominent tasks allocation algorithms.

6 Future Works

For the future work, we will test the performance of algorithms with much larger task graphs and devise more
efficient heuristic algorithms to solve this task scheduling problem. We consider using a lightweight swarm
intelligence algorithm permitting the agents to learn from the environment and act autonomously. This may

equally help to manage many more devices in the TMC system. Also, we consider carrying out a priority-based

144

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

scheduling for the tasks in a DAG, test them with existing real life mobility trace. This will offer a better

representation of the devices.

References

[1] W. Xu, "Huawei predicts 100 Billion internet connections globally by 2025" IndoAsian News Service,
Aug. 19, 2022.

[2] S. Nath and J. Wu, "Dynamic Computation Offloading and Resource Allocation for Multi-user Mobile
Edge Computing" in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1-6.

[3] B. Zhou and R. Buyya, "Augmentation Techniques for Mobile Cloud Computing: A Taxonomy, Survey,
and Future Directions”, ACM Comput. Surv., vol. 51, no. 1, Art. 13, Jan. 2018, 38 pages.

[4] A. Sciarrone, I. Bisio, F. Lavagetto, T. Penner, and M. Guirguis, "Context awareness over transient
clouds" in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2015, pp. 1-5.

[5] M. Guirguis et al., "Assignment and collaborative execution of tasks on transient clouds”, Ann.
Telecommun, vol. 72, no. 3-4, pp. 251-261, Jul. 2017.

[6] B. Hu, X. Yang, and M. Zhao, "Online energy-efficient scheduling of DAG tasks on heterogeneous
embedded platforms", J. Syst. Archit, vol. 140, p. 102894, 2023.

[7] M.W. Tian, S.R. Yan, W. Guo, A. Mohammadzadeh, and E. Ghaderpour, "A New Task Scheduling
Approach for Energy Conservation in Internet of Things", Energies , vol. 16, no. 5, p. 2394, 2023.

[8] S. Kadry, K. Abdulkareem, A. Lakhan, M. Mohammed, and A. Rashid, "Deadline Aware and Energy-
Efficient Scheduling Algorithm for Fine-Grained Tasks in Mobile Edge Computing”, Int. J. Web Grid
Serv, vol. 18, no. 1, pp. 1-18, 2022.

[9] M. Mscs, "An efficient dynamic decision-based task optimization and scheduling approach for
microservice-based cost management in mobile cloud computing applications”, Pervasive Mobile
Computing, vol. 92, 2023.

[10] A. A. Amer, I. E. Talkhan, R. Ahmed, and others, "An Optimized Collaborative Scheduling Algorithm
for Prioritized Tasks with Shared Resources in Mobile-Edge and Cloud Computing Systems", Mobile
Netw. Appl , vol. 27, pp. 1444-1460, 2022, doi: 10.1007/s11036-022-01974-y.

[11] C. Jin, J. Xu, Y. Han, J. Hu, Y. Chen, and J. Huang, "Efficient Delay-Aware Task Scheduling for loT
Devices in Mobile Cloud Computing”, Mobile Inf. Syst, vol. 2022, Art. 1849877, 10 pages, 2022.

[12] R. Alakbarov, "An Optimization Model for Task Scheduling in Mobile Cloud Computing”, IJCAC, vol.
12, no. 1, pp. 1-17, 2022.

145

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

[13] J. Guo, Y. Liu, B. Yang, B. Xiao, and Z. Li, "Energy-Efficient Dynamic Computation Offloading and
Cooperative Task Scheduling in Mobile Cloud Computing”, IEEE Trans. Mobile Comput , vol. 18, no.
2, pp- 319-333, Feb. 2019.

[14] Z. A. Jaaz, S. A. Abdulrahman, and H. M. Mushgil, "A dynamic task scheduling model for mobile cloud
computing”, in Proc. 9th Int. Conf. Electr. Eng., Comput. Sci. Informat. (EECSI), Jakarta, Indonesia,
2022, pp. 96-100.

[15] P. Singh, P. Singh, S. Rajpoot, and D. P. Singh, "Study and Analysis of Offloading in Mobile Cloud
Computing”, in Proc. Int. Conf. Technol. Advancements Innovations (ICTAI), Tashkent, Uzbekistan,
2021, pp. 280-284.

[16] X. Liu, J. Liu, and H. Wu, "Energy-Efficient Task Allocation of Heterogeneous Resources in Mobile
Edge Computing”, IEEE Access, vol. 9, pp. 119700-119711, 2021.

[17] E. Soares, P. Branddo, R. Prior, and A. Aguiar, "Experimentation with MANETs of Smartphones”,
arXiv:1702.04249v1 [cs.NI], Feb. 2017.

[18] I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, M. Imran, and S. Guizani, "Mobile ad hoc cloud: A survey",
Wireless Commun. Mobile Comput , vol. 17, pp. 1607-1625, 2017.

[19] S. C. Shah, "A Mobile Ad hoc Cloud Computing and Networking Infrastructure for Automated Video
Surveillance System”, J. Comput. Sci. Tech. Rep , vol. 6, 2017.

[20] M. Guirguis et al., "Assignment and collaborative execution of tasks on transient clouds”, Ann.
Télécommun, vol. 73, no. 3-4, pp. 251-261, 2018.

[21] I. Bisio, F. Lavagetto, A. Sciarrone, T. Penner, and M. Guirguis, "Context-awareness over transient cloud
in D2D networks: energy performance analysis and evaluation”, Trans. Emerg. Telecommun. Technol
, vol. 28, no. 2, 2017.

[22] A. Sciarrone, |. Bisio, F. Lavagetto, T. Penner, and M. Guirguis, "Context Awareness over Transient
Clouds", in Proc. IEEE Global Commun. Conf. (GLOBECOM) , 2015, pp. 1-5.

[23] T. Penner et al., "Transient clouds: Assignment and collaborative execution of tasks on mobile devices,"
in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2014, pp. 2801-2806.

[24] T. Penner et al., "Demo: Transient clouds”, in Proc. Int. Conf. Mobile Comput. Appl. Serv.
(MobiCASE), 2014, pp. 153-154.

[25] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, "Exploiting Massive D2D Collaboration for Energy-
Efficient Mobile Edge Computing”, in Sustainable Green Networking and Computing in 5G Systems:

Technol., Economics, Deployment, 2017.

146

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

[26] T. F. Ndambomve, F. Mokom, and K. D. Taiwe, "A Dynamic Application Partitioning and Offloading
Framework to Enhance the Capabilities of Transient Clouds Using Mobile Agents”, Int. J. Comput ,
vol. 40, no. 1, pp. 109-126, 2021.

[27] M. Shahzamal, "Lightweight Mobile Ad-Hoc Routing Protocols for Smartphones”, Macquarie
University, Sydney, Australia, Apr. 2018.

[28] IEEE Standard for Information Technology—Telecommunications and Information Exchange Between
Systems Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-2012, pp.
1-2793, Mar. 2012.

[29] F. Gu, J. Niu, Z. Qi, and M. Atiquzzaman, "Partitioning and offloading in smart mobile devices for
mobile cloud computing: State of the art and future directions"”, J. Netw. Comput. Appl, vol. 85, pp. 1-
23, 2018.

[30] A. Lakhan et al., "Dynamic Application Partitioning and Task-Scheduling Secure Schemes for Biosensor
Healthcare Workload in Mobile Edge Cloud”, Electronics , vol. 10, p. 2797, 2021.

[31] Q.H. Nguyen and F. K. Hussain, "Smart Mobile Edge Computing for Wireless Sensor Networks: Energy
Efficient Task Offloading Strategies”, in Proc. IEEE Global Commun. Conf. (GLOBECOM) , 2022,
pp. 281-285.

[32] Z. Wei, X. Yu, and L. Zou, "Multi-Resource Computing Offload Strategy for Energy Consumption
Optimization in Mobile Edge Computing,” Processes , vol. 10, no. 1762, 2022, doi:
10.3390/pr10091762.

[33] R. Tahboub and F. Warasna, "Security issues in Mobile Cloud Computing Frameworks based on Mobile
Agents," Deanship of Graduate Studies and Scientific Research, Palestine Polytechnic University,
Hebron, Palestine, 2015.

[34] X. Liu, C. Yuan, Z. Yang, and Z. Zhang, "Mobile-agent-based energy-efficient scheduling with dynamic
channel acquisition in mobile cloud computing,” J. Syst. Eng. Electron. , vol. 27, no. 3, pp. 712-720,
Jun. 2016.

[35] Q. Wang, Y. Mao, Y. Wang, and L. Wang, "Computing task offloading based on multi-cloudlet
collaboration," Comput. Appl. , vol. 40, pp. 328-334, 2020.

[36] S. Ghasemi-Falavarjani, M. Nematbakhsh, and B. S. Ghahfarokhi, "Context-aware multi-objective
resource allocation in mobile cloud,” Comput. Electr. Eng. , vol. 44, pp. 218-240, 2015, doi:
10.1016/j.compeleceng.2015.02.006.

147

International Journal of Computer (1JC) - Volume 51, No 1, pp 106-148

[37] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, "An Online Algorithm for Task Offloading in
Heterogeneous Mobile Clouds”, ACM Trans. Internet Technol. , vol. 18, no. 2, Art. 23, 25 pages, Jan.
2018, doi: 10.1145/3122981.

[38] V. Balasubramanian, K. Kroep, K. C. Joshi, and R. V. Prasad, "Reinforcing Edge Computing with
Multipath TCP Enabled Mobile Device Clouds," 2019.

[39] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, "Exploiting Massive D2D Collaboration for Energy-
Efficient Mobile Edge Computing," IEEE Wireless Commun. , Aug. 2017, doi:
10.1109/MWC.2017.1600321.

[40] S. C. Shah, "A Mobile Ad hoc Cloud Computing and Networking Infrastructure for Automated Video
Surveillance System," J. Comput. Sci. Tech. Rep. , vol. 6, 2018.

[41] C. Tang, S. Xiao, X. Wei, M. Hao, and W. Chen, "Energy-efficient and Deadline-satisfied Task
Scheduling in Mobile Cloud Computing,” in Proc. IEEE Int. Conf. Big Data Smart Comput. , 2018.

[42] S. M. Kak, P. Agarwal, and M. A. Alam, "Task Scheduling Techniques for Energy Efficiency in the
Cloud", EAI Endorsed Trans. Energy Web , vol. 9, no. 39, Jun. 2022, doi: 10.4108/ew.v9i39.1509.

[43] H. Wu, "Multi-Objective Decision-Making for Mobile Cloud Offloading: A Survey" IEEE Access, Feb.
28, 2018.

[44] H. Cui, J. Zhang, C. Cui, and Q. Chen, "Solving large-scale assignment problems by Kuhn-Munkres
algorithm”, in Proc. 2nd Int. Conf. Adv. Mech. Eng. Ind. Inform. (AMEII), 2016.

[45] H. W. Kuhn, "The Hungarian method for the assignment problem", Naval Res. Logistics Quart. , vol. 2,
pp. 83-97, 1955.

[46] A. Ali, M. M. Igbal, H. Jamil, F. Qayyum, S. Jabbar, O. Cheikhrouhou, M. Baz, and F. Jamil, "An
Efficient Dynamic-Decision Based Task Scheduler for Task Offloading Optimization and Energy
Management in Mobile Cloud Computing,” Sensors , vol. 21, no. 13, p. 4527, 2021.

[47] S. Nath and J. Wu, "Dynamic Computation Offloading and Resource Allocation for Multi-user Mobile
Edge Computing" in Proc. IEEE Global Commun. Conf. (GLOBECOM) , 2020.

[48] G. A. Mills-Tettey, A. Stentz, and M. B. Dias, "The Dynamic Hungarian Algorithm for the Assignment
Problem with Changing Costs", Carnegie Mellon University, Jul. 2007.

148

