

123

International Journal of Computer (IJC)

ISSN 2307-4523 (Print & Online)

https://ijcjournal.org/index.php/InternationalJournalOfComputer/index

Optimizing Energy Efficiency on Task Allocation for

Cyber Foraging in a Transient Mobile Cloud System

Tiako Fani Ndambomvea*, Felicitas Mokomb, Kolyang Dina Taiwec

a,cLaRI Lab, University of Maroua, P.O. Box 814 Maroua, Cameroon

a,bSchool of Information Technology, Catholic University Institute of Buea, P.O. Box 563 Buea, Cameroon

bIEEE Computational Intelligence Society Member,Association for Computing Machinery (ACM) Member

aEmail: tiakofani@cuib-cameroon.net

bEmail: fmokom@cuib-cameroon.net

cEmail: dtaiwe@yahoo.fr

Abstract

In this research, we address the essential problem of achieving energy-efficient task allocation, which is a vital

building block of cyber foraging on a transient mobile cloud. The goal is to minimize the total energy consumption

for collaborative task executions among mobile devices in a multi-hop mesh network constructed on a mobile

agent-based framework. Accordingly, we propose an energy-efficient task allocation problem formulation that

takes into account the required restrictions. Next, we develop an optimal task allocation solution based on the

modification of the Kuhn-Munkres algorithm by leveraging on the structural properties of the problem. We further

evaluate the effectiveness of the suggested task allocation scheme through numerical study on a simulated system.

The simulation reveals a performance gain on energy consumption reduction over other widely used task

assignment algorithms.

Keywords: Transient mobile cloud; Multi-hop mesh network; Energy-efficient task allocation; Kuhn-Munkres

algorithm; Mobile agent-based framework.

--

Received: 6/27/2024

Accepted: 8/27/2024
Published: 9/5/2024
--

* Corresponding author.

mailto:tiakofani@cuib-cameroon.net
mailto:fmokom@cuib0cameroon.net
mailto:dtaiwe@yahoo.fr

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

124

1. Introduction

With their ever-evolving capabilities, mobile devices are now able to access an incredible amount of data and

information via apps, email, computations and storage on-the-go, with the concept of Mobile Cloud Computing

(MCC). The advent of mobile cloud computing has paved the way for quicker, more affordable solutions that

provide security and flexibility. Huawei envisions that by 2025, the number of terminal devices connected to the

Internet will be close to 100 billion, and a large majority of these devices will be mobile phones [1]. This reveals

the prominent need for Mobile Cloud Computing as it enables users to work more effectively, given that mobile

devices are still limited in compute and energy resources [2], so much so that they are unable to completely execute

computation intensive applications on their own.

Among the various types of MCC are Transient Mobile Clouds (TMC) [3]. These are temporal clouds that enable

nearby mobile devices to form an ad hoc network and advertise their capabilities as cloud services. This is

achieved by leveraging the idle resources of nearby mobile devices (processing, storage, and communication),

creating a distributed cloud infrastructure that can be used to deliver services to users [4]. These services can be

offered to other devices in the temporary smartphones ad hoc network. One of the main advantages of transient

mobile clouds is that they can be set up quickly and easily, without the need for a central cloud infrastructure or

a fixed network. This makes them particularly useful in situations where traditional cloud computing may not be

available or feasible, such as in remote locations, crowded areas with limited connectivity, or during disasters [9].

Meanwhile, their main disadvantage is the ephemeral nature of the cloud structure, given that it often changes due

to the mobile devices entering and leaving the network [5]. Transient mobile clouds can be used to provide a

variety of services, including temporal data storage, content distribution, and computation offloading. They can

also be used to improve the performance of existing cloud services by providing additional resources or by caching

frequently used data. Furthermore, because the mobile devices are close to one another in a geographically

constrained environment, they are more likely to share interests and have social and context awareness, which is

useful for a variety of applications [4]. This awareness is more difficult to use with distant clouds. By utilizing the

collective resources of the group, devices are no longer constrained by their local hardware and software

capabilities. TMC systems harness the ubiquitous nature of mobile devices along with their ever-increasing sets

of capabilities in providing a rich computing platform. Overall, transient mobile clouds are an innovative approach

to cloud computing that leverages the resources of mobile devices to create a flexible and dynamic cloud

infrastructure.Among the various services provided by transient mobile clouds, Computation Offloading is a key

activity. It seeks to increase the functionality of mobile systems by sending some of the computational work to

distant devices in the cloud network. This process is carried out by assigning a part of the mobile devices' tasks,

distributing them through the network and running them on the assigned devices [6]. We focus our interest on

Task assignment, which is a well-studied problem with many proposed algorithms [7 - 16]. In these algorithms,

each device provides a cost estimate for each task it can run. The aim of a task assignment algorithm is to find the

assignment with the lowest overall cost in time and/or energy consumption. This will permit the requesting device

to execute most of its tasks efficiently without depending on Internet resources. Therefore, designing efficient

task assignment strategies is one of the ways to enhance the computation offloading experience of mobile users

in the Transient mobile cloud systems.

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

125

2. Overview of Techniques Related to Transient Mobile Clouds

Transient mobile clouds have the potential to alleviate the internet connectivity delay present in most MCC

solutions, and more precisely Mobile Edge Cloud Computing solutions, through the creation of an ad hoc network

by nearby edge devices [17] and the subsequent offloading of some tasks (Cyber Foraging) to selected devices.

Substantial study has been done in the field of transient mobile clouds as a result of the recent major increases in

the numbers, kinds, and capabilities of mobile devices [20 - 25]. For this purpose, three aspects are considered in

setting up these clouds: Network architecture, Code partitioning and offloading, Tasks scheduling mechanisms.

2.1 Network architecture

Transient mobile clouds currently have a number of restrictions that relate to their growth on a local network with

a high number of devices and the control of the network instability brought on by the constant mobility of the

devices. Given that a considerable quantity of mobile devices is needed to constitute an efficient cloud system,

the authors in [26] argued that setting the devices into a multi-hop ad-hoc network will permit to have access to

greater resources even in case the devices requested to serve are very distant from the requesting device. Terry

Penner [20] designed a framework for Assignment and Collaborative Execution of Tasks on Mobile Devices in a

Transient Cloud. That cloud utilizes the collective capabilities of the devices present, along with their social and

context awareness, and that cannot be provided efficiently by the traditional clouds. In [24], they provided a real

implementation on the Android platform using the Wi-Fi Direct framework. However, the work had the following

limitations as per the network architecture:

o In Wi-Fi Direct, only one device (called the Group Owner) acts as a router, and all of the other peer devices

that connect to it create a single hop network. Also, any device in a group can only be a client in another

group. However, this limits the possibility of expansion of the network and the size of the network to be

a maximum of one hop from the Group Owner.

o Secondly, because of the fact that every device must connect to the Group Owner, a significant disadvantage

is that if the Group Owner leaves, the group is torn down and a new group must be established from

scratch. This makes Wi-Fi Direct unsuitable as a basis for multi-hop networking.

o Thirdly, the group owner is the hub device of the network that is responsible for maintaining the network’s

state and it needs to have a stable connection with the client devices in the network to route tasks (code)

and data.

Therefore, their solution may hardly work on a multi-hop ad-hoc (mesh) network (MANET) with a very unstable

connectivity between devices, which is normally the typical network for a realistic Transient Cloud [18].

Meanwhile, it is crucial to consider this network topology and its characteristics to produce an application

framework which responds to the needs and the features of the TMC structure.

Having adopted a multi-hop mesh network for the transient cloud, there is need to adapt to it a protocol that require

minimal memory for routing table, less computing resources and generate less protocol control overhead, given

the limited resources on mobile devices. The latest amendment of the 802.11 standard [28] provides the

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

126

Independent Basic Service Set (IBSS) mode that can be used for ad-hoc networking. It is commonly referred to

as ad-hoc mode because it does not require any infrastructure to be in place. It can be used as a basis for mesh

networking. In this mode, all nodes play similar roles, and any node can communicate directly with any other

node within the network, as those nodes are also set to the IBSS mode, share the same Service Set Identifier

(SSID) and are within its radio range. The IBSS mode itself, however, does not offer multi-hop capabilities. There

is no provision for path discovery and selection, nor for relaying packets to nodes out of the radio range of the

sender. In IBSS-based ad-hoc networks, these functions must be accomplished by an additional protocol, like

BATMAN [27], usually at the network layer. Among all the existing protocols for MANETs, the Better Approach

to Mobile Ad-hoc Network protocol (BATMAN) is used more often, reason being that it does not need to maintain

full path to the destinations. Each node only collects and maintains the information about the best next hop towards

all other nodes in the network. Every node collects this information through hello packets broadcast periodically.

This makes the protocol suitable for storage constrained devices. Also, since this protocol depends only on hello

packets to know the availability of nodes and does not broadcast topology change messages, the control overhead

is low. For the purpose of this work, we have built a TMC simulation based on the BATMAN protocol on Repast

Symphony. In the Figure 1 for example, we considered 14 devices that are constituted into a TMC network through

the BATMAN protocol. Here, a device has access to other devices via a direct connection or a multi-hop (indirect)

connection, and every connection may have a weight wij that represents the communication cost between the

devices Di and Dj.

Figure 1: Devices constituting a Multi-Hop Mesh Network using the BATMAN protocol

2.2 Code partitioning and offloading

Code partitioning and offloading constitute another issue on Transient mobile clouds [17] and they need to be

properly addressed to match the requirements of such clouds set up on a multi-hop mesh network, otherwise the

distributed computing process will be hardly effective for the Transient mobile Cloud.

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

127

2.2.1 Code partitioning

With respect to code partitioning, there are several approaches. Bowen and his colleagues. [3] proposed a

taxonomy of these approaches based on their strategies to break out application execution components into non-

offloadable and offloadable modules. A partitioning algorithm could be classified into either of two categories

[29, 30]: (1) static: when it is fixed at development phase based on the static analyzer and dynamic profiling; and

(2) dynamic: when it includes runtime information from different profilers, log files, and the interaction among

components of the running application. Therefore, static approaches are often based on pre-specified annotation

where developers annotate the candidate methods for offloading and leave the remaining to the framework. While

the resulting partitions of static algorithms do not change in all executions, those of dynamic algorithms could be

updated before each execution to adapt to environmental conditions and optimize offloading objectives. Because

of that, though dynamic algorithms may have high overhead during the offloading process, we still opt for using

a dynamic approach with Operating System (OS) partitioning considering the various and changing capabilities

of the devices in the transient cloud and instability of the network structure.

2.2.2 Code offloading

One of the most typical methods to analyze and model code offloading for an application running on a smartphone

is to use its call graph as generated by the OS, which is a Directed Acyclic Graph (DAG), that represents the

relationship between the computational components of that application [6, 31, 32]. Normally, the nodes of the

graph represent the procedures/functions of a program and the directed edges represent the

communication/invocations dependency between them, as shown in Figure 2. Here, two dependency levels can

be identified. A module cannot be executed until the execution of its parents is completed. On the other hand, all

the modules in the same dependency level can be executed in parallel. The operating system on the smartphone

generates this DAG for the application with each of the nodes (processing block) being light enough to be easily

transported through the MANET and to be quickly executed. Furthermore, advanced analysis on the DAG can

permit to group the modules into two parts: one part which is to run locally and the other part which is to be

offloaded to the TMC devices. For example, some processing blocks with special hardware needs, such as camera,

accelerometer, etc. should be running locally, while the blocks that need more of computation are offloaded.

Figure 2: DAG with two identified dependency levels

In [26], the study presents a transitory cloud-based framework that makes use of multi-agent systems to enable

dynamic code offloading as well as to make it easier for an individual code block to be packaged in a Mobile

Agent (MA), to travel around and be executed on one or more devices in the network. In Figure 1, under various

T4

T1

T2

T3
T6

T5

T8

T7

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

128

conditions, D1 may offload a task for execution to D7 by packaging it in a MA. That agent can hop through D11,

D12, D13 to get to its destination; this depending on whether a route to D7 was recorded during the establishment

of the network. Upon arrival at D7, if the task in the MA does not complete its execution there, it is repackaged in

a MA alongside its current status and offloaded again to another device. It continues like that till the task is

completed and returns to its origin. Therefore, as the number of hops and transitions of the MA increases, the

communication cost and the energy consumed increase likewise. We adopt this multi-agent system strategy as

presented in [26]. When designed and implemented, these intelligent mobile agents would work alone or with

others, to successfully adapt to the frequent arrival and departure of devices in and out of the network [33, 34].

2.2.3 Offloading Decision

In considering a user application as a set of M processes forming a DAG, all the processes in the same dependency

level can be executed in parallel. As such, the process that takes most time for execution ultimately gives the level

execution time as it covers the execution time of all the processes in that level. Hence, greater number of processes

in a dependency level decreases the overall execution time of the application. The total execution time of the

application is the summation of execution times of all the levels and data transmission times between the modules.

To determine the appropriate devices for the offloaded execution, given that the total execution time of the

offloaded processes helps to define the performance of the TMC System, the receiving devices must have to fulfill

the selection criteria. These criteria consider the computation power, energy, data rate, the memory usage and the

disk usage and associativity time [39]. In several approaches [35,38], a device will be selected as a receiver if it

can execute the task in less time compared to the sender device and it maintains a minimum data-rate with the

sender. Moreover, it must have sufficient energy to execute the task and send the result back to the sender. During

this execution and communication time, the two devices remain connected. However, this will not be suitable for

this transient mobile cloud given that the devices are not necessarily directly connected to each other in the multi-

hop mesh and they may move out of the network due their mobility.In our approach based on [26], each device,

through its MAZ, is responsible for maintaining the list of resources available on other devices it knows in the

whole network (by a direct or indirect link given that it is a multi-hop mesh network). Some resources that are

monitored here are the network bandwidth, the processor usage, the queuing delay. In our framework, each device

monitors these three resources to make sure it has the latest usage information of other devices. In this regard, for

the amount of energy, we consider a threshold value that needs to be available on a mobile device before it can

receive an offloaded task, so that the device can still run its own compulsory activities (the minimal level of energy

present on a device that exempts it from participating in the Transient cloud). In the same light, we may also

consider a threshold for the amount of memory. With this information, each mobile device can make allocation

decisions locally. Also, the queuing delay of a mobile device is frequently updated whenever a new task is

received, so each mobile device has to periodically broadcast its queuing delay to inform all the devices of its

status. By increasing the frequency of broadcast, the information collected by the tasks’ generators will be more

accurate. Then, the MAZ on the sender will most likely make good allocation decisions, but at the cost of more

control message overhead.

The authors in [12] state that for offloading to be effective, the computation part of program must be significantly

larger than its communication part. This implies that when one uses cyber foraging to improve response time or

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

129

energy consumption, the offloading mechanism would be more effective for applications requiring more

computation than communication. We illustrate a simple flowchart of cyber foraging on a requesting device in

our TMC (See Figure 3). Therefore, large tasks requiring higher execution times make offloading more effective

because the benefits of computation on a more powerful and faster surrogate outweigh the cost of communication.

However, the constraints on mobile devices are due to their mobility as it restricts the size of tasks to be offloaded

[18, 26, 32]. That is, if a task is too large to complete its execution before leaving the area in the networking

coverage of a surrogate, offloading becomes very complex and time-consuming solutions such as check pointing

and process migration would often be used. Therefore, a suitable offloading approach must specially consider the

mobility nature of mobile devices and manage a trade-off between mobility and task size. We introduce a hand-

over strategy to further manage this trade-off. In this scenario therefore, the user might prefer to lower the bar of

latency and constraints to favor general/local energy savings, as it is the case in our work. Also, in the TMC

system we propose, the time and the energy spent for one task is the sum of the time and energy on each transition

point (surrogate device) added to the communication time between transited surrogates in the network.

Figure 3: Flowchart of cyber foraging on a requesting device in the TMC system

Distant

surrogate

selected?

No

Start

End

Neighbouring

device

linked?

Yes

No Resources

available are

sufficient?

Partition DAG tasks

based on number of

surrogates

Exclude tasks

for local

execution

Yes

Assign task to best

surrogates

Local Execution No

Yes

Offloaded

Execution

through MAs

Transit results

to request

device to MAs

Merge

result

Execution

completed

?

Yes

No

Network

Bandwidth

Queuing

Delay

Processor

Usage

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

130

2.3 Tasks scheduling mechanisms

When energy efficiency is taken into account, task scheduling becomes much more complicated but crucial.

Execution overhead and scalability are major concerns in current research on energy-efficient task scheduling [7].

Because the cloud nodes need to respond quickly to real-time tasks and ensure the mobility management of nodes

at the same time, the optimal task scheduling strategy needs to be selected to meet the low latency requirements

of users. Also, based on the needs and the features of the TMC system, the algorithm for task assignment and

execution should be derived to align with the framework described in [26], while taking into account some

constraint conditions such as response time deadline, dependency between task, data transmission and energy

cost. Actually, the objective of Task allocation scheme is to select an appropriate node for execution of a task as

aiming to reduce time and/or energy consumption. The task allocation process usually consists of two steps: (1)

Selection of nodes on which estimated task execution time is less than the task deadline and (2) Given the list of

nodes selected in (1), allocate a task to a node on which estimated energy consumption is minimum. To estimate

task execution time and energy consumption, models proposed in [31, 32, 40, 41] have been readjusted to the

TMC context in view of the above problems. We present them in Section 3 below.

In a nutshell, as presented in Figure 4, the user application plane builds the various tasks partitions, the framework

plane packages the tasks in MAs and allocates them and finally the MAs are distributed to various devices over

the network. Results of tasks are received via the planes in the reversed order, back to the user application.

Figure 4: Stack Approach to tasks allocation and Execution on a TMC system

3. Formulation of the Task Execution Problem

As a global perspective, we first introduce the model to describe the resources of a TMC device for mobile task

processing as follows. We consider the connectivity graph G1 = {N, E}, where the set of devices N is the vertex

set and E = {(i,j) : eij = 1, ∀ i, j  N} is the edge set where eij = 1 if devices i and j can establish a direct link

between themselves in the multi-hop mesh network.

3.1 Evaluating Energy Consumption

The computation cost constitutes the energy required by a given task to process on various devices. The

communication cost is the energy required for transferring the agent, its data and control information between the

PLANE 3: User Application partitions constituted as a DAG by
the OS

PLANE 2: Proposed framework managed by the MAZ that
packages tasks into MA and allocate to various devices

PLANE 1: Multi-Hop Mesh Network over the BATMAN
protocol

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

131

mobile devices in the TMC System and then, the resulting data sent back to requesting device. Therefore, we have

the considerations below.

For a given mobile node ni that has been partitioned into tasks to execute either onsite or otherwise, we consider

the following elements and their notations:

{Ni} = {Ni}A U {Ni}U . This is the set of n mobile nodes (devices) known by ni in the TMC.

The set of mobile nodes can be seen as a union of the sender node ni, the set {Ni}A of devices to which tasks of ni

have been allocated and the set {Ni}U of devices unused by tasks of ni.

{Ti} = {Ti}o U {Ti}L with {Ti}o = {Ti}par U {Ti}Seq. It is the set of m tasks of a given node ni.

This set can be seen as the union of the set {Ti}L of tasks that are executed locally and the set {Ti}o of tasks that

offloaded through agents. This later set is grouped into tasks that are executed parallelly in {Ti}par and others that

are executed sequentially in {Ti}Seq as denoted by the operating system.

The device ni has its CPU working frequency Wi (the total computation capacity in CPU cycles per unit time). Let

µi be the current load of node ni (the percentage of currently occupied processing capacity) since device i may

have some background load and/or run some unoffloadable tasks. Then the available processing capacity of ni is

Ci = (1-µi)Wi. With this note, we have the considerations given in Table 1.

Table 1: Parameters considered for the TMC system

3.1.1 Local Execution of a given task k on a node ni

Execution Time: 𝐸𝑇𝑖𝑖𝑘
𝑒 =

𝑆𝑖𝑘

𝐶𝑖
+ 𝑄𝑖𝑘 (1)

Parameter Description

Dij Data Rate from ni to nj over the network

ai : Processing Energy Consumption on ni per time unit;

bi : Transmission Energy Consumption on ni per time unit;

Pt(ni) : Transmission power of ni;

Pr(nj): Reception Power of nj

Bj : Average bandwidth on node ni

β: Factor of the throughput and packet loss

 For a given tk(ni) (task k of node ni)

Iik : Input data size of task k

Oik : Output data size of task k

Sik : Size of task k (amount of required computing)

Qik : Queuing delay of task k

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

132

Energy used during Computation: 𝐸𝐶𝑖𝑖𝑘
𝑒 = 𝑎𝑖𝐸𝑇𝑖𝑖𝑘

𝑐 (2)

Time spent for data communication (given that the task may require some input data or send some output through

the network):

𝐷𝑇𝑖𝑘
𝑑 =

𝐼𝑖𝑘+𝑂𝑖𝑘

𝐷𝑖
+ 𝛽 (3)

Energy used during Data communication: 𝐸𝐶𝑖𝑖𝑘
𝑑 = 𝑎𝑖𝐷𝑇𝑖𝑘

𝑑 (4)

Total Energy Consumption for the execution of task k locally on a given node: 𝐸𝐶𝑖𝑖𝑘
𝑙 = 𝐸𝐶𝑖𝑖𝑘

𝑒 + 𝐸𝐶𝑖𝑖𝑘
𝑑 (5)

3.1.2 Offloaded Execution of task k of node ni in an agent

𝑁[𝑡𝑘] is the ordered set of all the nodes nj that the MA having task k goes through in order to complete its

execution after leaving the node ni. Therefore, {N}A = ⋃][
k

tN
𝑛
𝑘=1 . (6)

Supposing that to get to a node nj, the MA hops through the nodes {nA1, nA2, …, nAk}as determined by the BATMAN

protocol, we have that the energy used for the data transfer of the agent having task k from ni through various nj

nodes is:

𝐸𝐶𝑖𝑗𝑘
𝑑 = ∑ {(

𝑝𝑡(𝑛𝐴1)+𝑝𝑟(𝑛𝐴2)

𝐷𝐴1,𝐴2
𝐼𝑖𝑘 +

𝑝𝑡(𝑛𝐴2)+𝑝𝑟(𝑛𝐴1)

𝐷𝐴2,𝐴1
𝑂𝑖𝑘) + ⋯ + (

𝑝𝑡(𝑛𝐴𝑘)+𝑝𝑟(𝑛𝑗)

𝐷𝐴𝑘,𝑗
𝐼𝑖𝑘 +

𝑝𝑡(𝑛𝑗)+𝑝𝑟(𝑛𝐴𝑘)

𝐷𝑗,𝐴𝑘
𝑂𝑖𝑘)}𝑗∈{𝑁[𝑡𝑘]} (7)

The energy used to execute the offloaded agent’s task through various nj nodes is:

𝐸𝐶𝑖𝑗𝑘
𝑒 = ∑ (𝑎𝑗

𝑆𝑖𝑘

𝐶𝑗
+ 𝑏𝑗

(𝐼𝑖𝑘+𝑂𝑖𝑘)

𝐷𝑗,𝑛𝑒𝑥𝑡
)𝑗∈{𝑁[𝑡𝑘]} (8)

where next indicates the succeeding device on the route back to ni to deliver the output.

The time used for executing the offloaded agent’s task is:

𝐸𝑇𝑖𝑗𝑘
𝑒 = ∑ (

𝑆𝑖𝑘

𝐶𝑗
+

(𝐼𝑖𝑘+𝑂𝑖𝑘)

𝐷𝑗.𝑛𝑒𝑥𝑡
+ 𝑄𝑖𝑘)𝑗∈{𝑁[𝑡𝑘]} (9)

where next indicates the succeeding device on the route back to ni to deliver the output.

The total energy needed for the offloaded agent having task k from ni through various nj nodes is

𝐸𝐶𝑖𝑗𝑘
𝑜 = 𝐸𝐶𝑖𝑗𝑘

𝑒 + 𝐸𝐶𝑖𝑗𝑘
𝑑 . (10)

The total energy needed for all the tasks of ni: 𝐸𝐶(𝑛𝑖) = 𝐸𝑝𝑎𝑟𝑡 + 𝐸𝐼 + 𝐸𝑚𝑒𝑟𝑔𝑖𝑛𝑔 + ∑ (𝐸𝐶𝑖𝑖𝑘
𝑙)𝑡𝑘∈{𝑇}𝑙

+

∑ (𝐸𝐶𝑖𝑗𝑘
𝑜)𝑡𝑘∈{𝑇}𝑜,𝑛𝑗∈{𝑁}𝐴

 (11)

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

133

where 𝐸𝐼 = 𝑝𝐼𝑑𝑙𝑒 × ∑ 𝐸𝑇𝑖𝑗𝑘
𝑒

𝑡𝑘∈{𝑇}𝑜,𝑛𝑗∈{𝑁}𝐴
− 𝑎𝑖 × ∑ (𝐸𝑇𝑖𝑖𝑘

𝑒)𝑡𝑘∈{𝑇}𝑙
 (12);

 with EI being the energy spent by node ni when it is idle, that is the amount of energy spent on locally executed

tasks subtracted to the amount of energy it saves on offloaded tasks. 𝐸𝑝𝑎𝑟𝑡 is the energy used to partition the

application into tasks according to its DAG. 𝐸𝑚𝑒𝑟𝑔𝑖𝑛𝑔 is the energy used to merge the results of various tasks

executions. These last two values can be approximated during the simulation.

The total time needed for all the tasks of ni to complete their execution:

 𝐸𝑇(𝑛𝑖) = ∑ (𝐸𝑇𝑖𝑖𝑘
𝑙)𝑡𝑘∈{𝑇}𝑙

+ ∑ (𝐸𝑇𝑖𝑗𝑘
𝑒)𝑡𝑘∈{𝑇}𝑠𝑒𝑞

+ 𝑀𝑎𝑥𝑡𝑘∈{𝑇}𝑝𝑎𝑟
(𝐸𝑇𝑖𝑗𝑘

𝑒) (13)

where 𝑛𝑗 ∈ {𝑁}𝐴

3.2 Mathematical model of the energy minimization problem

By taking into account the above formulations, our objective is to minimize the overall energy consumption of

the task executions by all the devices ni, which is formally described as follows:

min ∑ ∑ 𝜆𝑖𝑖𝑘𝐸𝐶𝑖𝑖𝑘
𝑙𝑥𝑖

𝑘=1
𝑛
𝑖=1 + (1 − 𝜆𝑖𝑖𝑘) ∑ ∑ 𝜆𝑖𝑗𝑘𝐸𝐶𝑖𝑗𝑘

𝑜𝑚𝑖−𝑥𝑖
𝑘=1

𝑛
𝑖=1,𝑗≠𝑖 (14)

 over xi

 subject to the constraints:

λijk = 0, ∀eij ∉ E, ∀ k ∈ M (15)

∑ j∈N λijk = ɛi, ∀ i ∈ N, ∀ k ∈ M (16)

∑ j∈N λijk ≤ 1, ∀ j ∈ N, ∀ k ∈ M (17)

λijk ∈ {0,1} (18)

𝑥𝑖 ∈ [1,m] (19)

x = ∑ 𝑥𝑖
𝑛
𝑖=1 , i∈N (20)

Where,

ɛi : binary indicator that is 1 if device i has a task to be executed and 0 otherwise

λijk : binary decision variable for task allocation, which is 1 if the task k of device i is offloaded to execute on

device j and 0 otherwise (λiik local execution on device i).

mi : Number of tasks generated by the DAG on Device i

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

134

Constraint (15) warrants that the task allocations are determined according to the feasible TMC connectivity.

Constraint (16) denotes that if a device has an offloadable task, this task should be assigned.

Constraint (17) denotes that during a task offloading round a device will execute at most one task at a time (which

could either be its own task or an offloaded task from a nearby device).

Constraint (18) follows from the context.

Constraint (19) denotes the tasks to be executed locally on each device i.

Constraint (20) denotes the number of locally executed tasks in the whole TMC system.

3.3 Adapted Kuhn-Munkres (Hungarian) Method for Optimal Task Assignment

We next propose the optimal solution for the problem in section 3.2 via a task assignment policy. At first glance,

one might regard this optimization problem as the classical NP-hard task allocation problem, meaning that finding

and concluding the best answer in a finite period is practically impossible [30, 42]. It has been demonstrated in

the literature, that this kind of task allocation problem can be solved optimally using the Kuhn-Munkres

(Hungarian) method [5, 25, 35]. It is one of the methods used in assigning tasks to each worker device in the

system that achieves an optimal assignment in which the aggregate cost is minimized, and whereby every task

must be assigned to only one device. It considers a bipartite graph for the possible allocations (See Figure 5 (a)),

derived from a 2-dimensional square matrix (See Figure 5 (b)) in which the rows Di represent the devices and the

columns Ti represent the tasks. An entry cij denotes the cost of assigning task j to device i. Its running complexity

is O(n3), where n is the number of tasks, and equal to the number of worker devices.

(a)

(b)

Figure 5: (a) A bipartite graph of all possible allocations, (b) A matrix of edge weights

Cij T1 T2 T3

D1 5 8 6

D2 7 9 7

D3 6 4 4

D3

D1

D2 T2

T1

T3

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

135

However, when dealing with a TMC system, there often arise the need to manage more tasks than devices at a

time, and then more devices than tasks at another time. It varies based on tasks that complete their execution,

devices that run out of resources and/or, devices that move into or out of the transient cloud. In those situations,

we may want to assign multiple tasks to the same device, or a device might not be assigned any task. Therefore,

unlike the Classical Hungarian method, it is clearly important for the assignment algorithm to achieve certain

properties such as load balancing and/or collocating tasks. Hence, we propose a modification to the Hungarian

method to make it suitable for TMC systems.

3.3.1 Cost allocation in the graph for a given device

The Hungarian algorithm assumes the existence of a bipartite graph, G2 = {D, T, E} where D is the set of devices

that the sender has access to through the network, T is the set of offloadable tasks of the sender, and E is the set

of edges. The edge weights may be stored in a matrix. Given that each device runs the allocation scheme for the

tasks it has, the devices it can access and on the basis of the data it has gathered in the TMC system, this matrix

is built in the algorithm according to the following cases:

Case 1: To indicate that the device i can do a local allocation of the task, for an edge that connects device i to its

own tasks, we set the weight cik =𝐸𝐶𝑖𝑖𝑘
𝑙 . This means that for a device i running the allocation scheme, row i will

have the energy consumption of local execution for each corresponding offloadable task of this device.

Case 2: For an edge that connects tasks of device i with another device j, we set the weight cjk = 𝐸𝐶𝑖𝑗𝑘
𝑜 . This means

that for a device i, row j will have the energy consumption of offloaded execution from device i to device j for

each corresponding offloadable task of the device i.

Case 3: If the number of tasks is less than the number of devices, some of them cannot be assigned any job, so

that we have to introduce one or more dummy tasks of size zero to convert the unbalanced assignment problem

to the balanced assignment problem that can now be solved classically. The devices assigned with the dummy

tasks are assigned are then left out of the final result.

Case 4: If the number of tasks is more than the number of devices, some of them cannot be assigned any device.

However, if we introduce one or more dummy devices to balance the problem, the assignment algorithm will

cause the starvation of larger tasks. Therefore, we rather iteratively select an equal number of tasks to assign to

the devices until all tasks are assigned. The selection may be based on the priority given by the queuing delay, the

level of dependency in the DAG, the remaining time for the connection due to the mobility.

Case 5 (Load Balancing): If a task has already been assigned to a given device j, device i should have the ability

to inflate the costs of other tasks by some factor (i.e., multiply the weight on already assigned devices by 2) when

considering device j again for the assignment. This is in other to avoid overworking and congestion, long waiting

time, and even distribution of tasks.

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

136

3.3.2 The modified algorithm

Here, we modify the Hungarian Algorithm on a bipartite graph as proposed by [44, 45] for the reasons already

presented.

Adapted Hungarian Algorithm (AH_Algo)

Given that the variables ui are assigned to each node di and dual variables vj are assigned to each node tj, the

minimization of the assignment problem is feasible when ui + vj ≤ cij.

Input: A bipartite graph G2 = {D, T, E} (where |D| = n, |T| = m) and an n × m matrix of edge costs C

Output: An optimum matching graph M

Let n = number of devices (nodes) and m the number of agents

If m >= n then do

r  n

While (r>=0 and m>=n) do

Select n tasks according to Case 4

Run the AssignTask() algorithm for the n tasks and n nodes

Remove from A the agents that have been assigned

Run Case 5 for Load Balancing

m  m – n, r  m%n

Endwhile

Run the AssignTask() algorithm for the r tasks and n nodes according to Case 3

Else Run the AssignTask() algorithm for the m tasks and n nodes according to Case 3

AssignTask():

Let q = min (n,m)

1. Perform initialization of the matching:

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

137

(a) Begin with an empty matching, M0 = ∅.

(b) Assign feasible values to the dual variables αi and vj as follows:

∀ di ∈ N, ui = 0, ∀ ti ∈ T, vj = mini(cij)

2. Perform q stages of the section in Phase.

3. Output the matching after the qth stage: M = Mq.

Phase:

An alternating path: a path through the graph such that each matched edge is followed by an unmatched edge

and vice-versa

An augmenting path: an alternating path that begins and ends with an exposed node.

A Hungarian tree: All alternating paths originating from a given unmatched node.

Searching for an augmenting path in a graph involves exploring these alternating paths in a breadth-first manner,

and the process can be called growing a Hungarian tree.

An Equity Graph is made up of edges where ui + vj = cij.

1. Designate each free (unmatched) node in N as the root of a Hungarian tree.

2. Grow the Hungarian trees rooted at the free nodes in the equality subgraph. Designate the indices i of nodes

di encountered in the Hungarian tree by the set I∗, and the indices j of nodes tj encountered in the Hungarian tree

by the set J∗. Go to step(4) if an augmenting path is found. Otherwise, if the Hungarian trees cannot be grown

further, continue to step(3).

3. Modify the dual variables u and v as follows to add new edges to the equality subgraph. Then resume step(2)

to continue the search for an augmenting path with

θ = 1/2 min (cij - ui - vj), i∈ I∗, j∉ J∗

ui ← ui + θ if i∈ I∗ and ui ← ui − θ if i∉ I∗

vj ← vj − θ if j∈ J∗ and vj ← vj + θ if j∉ J∗

4. Augment the current matching by exchanging matched edges with unmatched edges along the selected

augmenting path. That is, Mk (the new matching at stage k) is given by (Mk−1 − P) ∪ (P − Mk−1), where Mk−1 is the

matching from the previous stage and P is the set of edges on the selected augmenting path.

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

138

3.3.3 Dynamic Reallocation of tasks

Given the plausible unpredictability of user mobility and the variability of devices’ resources states, optimal

allocation decisions must be made dynamically at runtime in order to adapt to new conditions and so on. Mobility

alone will cause the quick change of some costs cij in the matrix for the mobile devices (workers) that move.

Therefore, dynamic reallocation seems more appropriate, but it has an associated higher communication overhead,

which should be taken under control [46, 47]. In the Adapted Hungarian Algorithm used here, the costs on a given

column or row is updated in the matching matrix. In this case, if a change happens on a device, there is no need

to restart the algorithm from start, since the current matrix represents the optimal assignment before the change

of costs in one node. It is then more effective to use the Dynamic Hungarian algorithm proposed by [48]. It uses

the current optimal assignment matrix to produce a new complete matching matrix M representing an optimal

solution to the problem with the changed edge costs.

Optimized Version of the algorithm to integrate dynamic reallocation (Dynamic_Hungarian)

Input:

• An optimal solution to the above assignment problem, comprising a complete matching M∗, and the final values

of all dual variables ui and vj .

• k cost changes, each of which can be a row i∗, a column j∗, or a single entry ci∗j∗ of the cost matrix.

Output:

A new complete matching, M, representing an optimal solution to the problem with the changed edge costs.

Perform initialization: For each of the k cost changes

• If a single value ci∗j∗ of the cost matrix changed from cold to cnew:

(a) If cnew > cold and di∗ is matched to tj∗, then remove the edge (di∗ , tj∗) from the matching M∗.

(b) Otherwise, if cnew < cold and uj∗ + vi∗ > cnew

 – Assign uj∗ = minj (ci∗j − vi)

 – If di∗ is not matched to tj∗ , remove the edge (di∗ , mate(di∗)) from the matching M∗ .

 [Note: We may stochastically decide to modify di∗ rather than tj∗ in this case. If tj∗ is modified, then the edge

(mate(tj∗), tj∗) should be removed from the matching instead of (di∗ , mate(di∗))] .

• Otherwise, if a row i∗ of the cost matrix changed:

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

139

 (a) If di∗ is matched, remove the edge (di∗ , mate(di∗)) from the matching M∗ .

 (b) Assign ui∗ = minj (ci∗j − vj)

• Otherwise, if a column j∗ of the cost matrix changed:

 (a) If tj∗ is matched, remove the edge (mate(tj∗), tj∗) from the matching M∗ .

 (b) Assign vj∗ = mini(cij∗ − ui)

2. Let k∗ be the number of edges removed from the matching in the initialization phase of the algorithm (note k∗

≤ k). Perform k∗ iterations of Phase from the AH_Algo.

Output the resulting matching M.

3.3.4 Evaluating the Send_Over benchmark for a given agent hosting task Tk originating from a node ni

With the continual movement of the mobile users and the progressive change of status of the resources in the

devices over time, the costs cij may change often, and this even faster if the connected devices move in divergent

directions or out of reach. For this reason, there is need to check at every time slice Ts, the devices that have

received offloaded agents and to measure the remaining connection time Tc on the links that they have in the

network. We have that: Tc = (D-Dms)/Sm , Dms = C * TRTT , C = 300 * 106 m/s, with D: Max Distance Coverage

Range of the Wifi = [80 – 200]m (in practice), Dms : Average sampling distance between 2 given devices, TRTT :

Round Trip Time interval, C: Standard speed of the wave, Sm : Current Speed of the device.

An agent executes its tasks on a device as long as that device has sufficient resources and the connection time is

valuable. When the conditions of execution are no longer satisfactory, the agent needs to move to another device

on the basis of the allocation algorithm. Here, we consider the energy level of the device measured at every time

slice Ts and the connection time, in order to determine the Send_Over benchmark (which is the threshold for the

agent to move to another device). The lowest limit energy level for any device to be considered for participation

in the network may be 40%. As indicated in Table 2, we consider 2 metrics (Contact Time, Energy used) measured

for every time period Ts to decide on the Send_Over of the agent concerned (see line 1 to line 4). For this purpose,

we assume some practical values including 𝑇𝑠 = 𝐸𝑇(𝑛𝑖) ×
1

𝜕
, 𝑤𝑖𝑡ℎ 𝜕 = 𝑙𝑛(𝑏𝑖) + 𝑙𝑛(𝑇𝑐) .

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

140

Table 2: Metrics used for the Send_Over

Energy Consumed Connection Time Send_Over Benchmark

1) Low I Average

2) Low I Average

3) Low I Average I High

4) High

High

Average

Low

Low I Average I High

Low

Average

High

High

Low = [0,25[

Average = [25,50[

High = [50, ---[

Low = [0, Ts + 5[

Average = [Ts + 5, Trt + 10[

High = [Trt + 10, ---[

E_Level Energy Level in the Battery (%)

Threshold Low Average High

40 41- 60 61-80 81- 100

To design the Send_Over algorithm, we consider the following values:

Trt : Remaining Time to avail the Service

Elevel : Energy Level in the Battery

Ts : Time slice after which connection time and energy used is measured

SS: Average received signal strength = AVGi ɛ Ts RSSI[i]

RSSI[1,…, i] : Array of signal strength values collected overtime interval Ts.

Essentially, the Send_Over is triggered when its benchmark is high. However, If Send_Over benchmark = Average

and E_Level = low and SS < SS
Threshold

 and T
rt

> T
c
 , then Send_Over is equally triggered.

Send_Over Algorithm

Input:
Agent id carrying Task k

Start:
T

rt
= Initial total Execution Time

While T
rt

> 0

 For i1, T
s
 Measure RSSI[i]

 Compute Energy level, SS, Contact Time

 Get Send_Over_Benchmark

 If (Send_Over = High) and (SS < SS
Threshold

) then AH_Algo()

 ElseIf (Send_Over = Average) and ((E_Level = Low) or (SS < SS
Threshold

)) and (T
rt

> T
c
) then AH_Algo()

 Else do nothing

 EndIF

EndWhile

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

141

4. Simulation and Results

4.1 General Considerations

To evaluate the effectiveness of the solution proposed, we implement a simulation environment suitable for this

framework’s setting with the help of mobile agents. We used the Repast Symphony 2.9.1 software which is an

agent-based modelling and simulation system. It is open source, mainly java-based, richly interactive, expert

focused. The operating environment is an Intel Core i5 with a 4.6 GHz CPU and 8 GB memory laptop. We initially

considered 20 devices (nodes) constituted into a TMC system as described above, and they are assumed to be

moving in and out of a 200 m long surface area at different positions. Given the simulation environment, we can

assign to all nodes the same battery level and enough energy to run the whole experiment as these deplete over

time. We considered a threshold for the amount of energy that needs to be available on a mobile device before it

can receive an offloaded task, so that the device can still run its own compulsory activities (the minimal level of

energy needed for a device to participate in the system). We applied the Random Gauss-Markov (RGM) [3] model

which is often used in modelling mobility for mobile cloud augmentation. RGM moves a mobile node in time

intervals, such that, at each time interval, the next location dnext and speed snext are calculated based on its current

location dpre and speed spre . We have that:

𝒔𝒏𝒆𝒙𝒕 = 𝜶𝒔𝒑𝒓𝒆 + (𝟏 − 𝜶)𝒔𝒂𝒗𝒈 + √(𝟏 − 𝜶𝟐)𝒔𝒓𝒂𝒏
𝟐

 and 𝒅𝒏𝒆𝒙𝒕 = 𝜶𝒅𝒑𝒓𝒆 + (𝟏 − 𝜶)𝒅𝒂𝒗𝒈 + √(𝟏 − 𝜶𝟐)𝒅𝒓𝒂𝒏
𝟐

where α is the tuning parameter to vary the randomness. savg, davg represent the mean values, and sran, dran are two

random variables from a Gaussian distribution. RGM avoids the sudden change of direction issue by letting past

states influence future states.

Every node generates its own DAG of maximum 20 tasks independently following a Poisson arrival process.

Task characteristics (i.e., complexity, data size, etc.) are selected randomly within the range of chosen max values.

For example, we may vary the task sizes from 0 MFLOP to 60 MFLOP and the input data sizes from 0 to 20MB.

Other important simulation parameters used for the devices are given in the Table 3.

Table 3: Simulation Parameters

Parameters Max Values

Transmission power 100 MW

Reception power 25 MW

CPU processing capacity 1.5 GHz

Data transmission rate 20 Mbps

Bandwidth 20 MHz

Using this mobile agent simulator, we constructed a prototype, while considering the characteristic values of the

network protocol (BATMAN), to represent all the components of the 3 planes designated in Figure 5. This

prototype was implemented with over 7000 lines of code in Java.

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

142

Figure 5 (a) shows a view of the mobile devices (blue dots), their agents moving towards the devices where they

have been assigned (red stars) and the green arrows shows the link between a device and the agents carrying its

tasks. Figure 5 (b) illustrates the variability of the speeds of the devices as they move. Every device runs the

AH_Algo as it starts the allocation of its tasks. Once this is done, during its movement, it will run the

Dynamic_Hungarian algorithm in order to manage the few changes in cost. If a device is getting out of reach, it

will run the Send_over algorithm. To handle cases of packet loss, after a required execution and transfer time,

supplemented by an average delay rate, if a given agent has not returned to the sender with a result, the MAZ may

resend an agent with the same information for re-execution especially if the priority of the tasks hosted in it was

critical.

(a) (b)

Figure 5: (a) Simulation view of the devices and allocated agents (b) Variability of the devices’ speeds over

time

4.2 Performance Evaluation

In the simulation with 20 devices, about 300 tasks are generated and encapsulated in agents (see Figure 6 (a)). We

compare our updated Kuhn Munkres task assignment policy to three other schemes that are also used in these

scenarios: the Monge Kantarovich Algorithm, the MinMax algorithm and the Random Allocation algorithm. We

run 50 rounds of these task assignment schemes to obtain the average energy consumed up until the execution of

all the tasks. The feasible network connectivity among the devices also varies from round to round, which depends

on the devices’ positions while the users move. We depict the energy consumed of different schemes in Figure 6

(b). We observe that our proposed scheme (AH_Algo) can save sufficiently more energy compared to other

schemes. Also, with the AH_Algo, the tasks’ execution is completed on average a few time ticks earlier than with

the other schemes, considering the constraints depicted in the TMC system, as it stops increasing at time tick 569.

Furthermore, Figure 8 presents the average load balancing over the 20 devices, each having a number of tasks

allocated through a given scheme as listed in the table. We note that the AH_Algo is able to equitably manage the

load of tasks assigned to devices better than other schemes. These points demonstrate the superior performance

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

143

of our task allocation scheme for a TMC system.

(a) (b)

Figure 6: (a) Devices and Mobile Agents count (b) Average energy consumption in the whole system over

time per allocation scheme

(a) (b)

Figure 7: (a) Energy consumed with 15 devices (b) Energy consumed with 20 devices

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

1
3

9
7

7
1

1
5

1
5

3
1

9
1

2
2

9
2

6
7

3
0

5
3

4
3

3
8

1
4

1
9

4
5

7
4

9
5

5
3

3
5

7
1

6
0

9
6

4
7

6
8

5
7

2
3

En
e

rg
y

 C
o

n
su

m
p

ti
o

n

Time Tick Count

AH_Algo Monge_K MinMax Random

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

144

Figure 8: Load Balancing in Task Allocation on the devices

We equally examined the case of running the AH_Algo when there are more or less devices in the TMC system

to manage tasks. Figure 7 (a) represents the average energy consumed over time with 15 devices, and Figure 7 (b)

does same with 20 devices. We observe that the performance of our algorithm will slightly increase with

increasing number of users even for devices that has a high number of tasks. This can be seen in the fact that it

takes more time to execute those tasks with less devices though almost the same amount of energy is spent in both

cases. The reason is that a larger number of devices would enable a device to have more neighbors, and hence a

device can have more opportunities to offload the task to a suitable device and to execute more tasks parallelly.

This will decrease the number of idle devices, and hence promote the overall performance. However, the difficulty

is that when the TMC system expands, it has the tendency to increase the processing time because there are more

devices to consider for the task assignment.

5 Conclusion and Limitations

In this paper, we modeled the tasks allocation problem in TMC system as an energy consumption optimization

problem, while taking into account task dependency, data transmission and some constraint conditions such as

and cost. We further solved it using an adapted version of the Kuhn-Munkres (Hungarian) Algorithm to fit in the

mobile ad hoc cloud networking infrastructure described above. Furthermore, we have considered the

Dynamic_Allocation algorithm and proposed a Send_Over algorithm that permit to easily manage the change in

energy cost due to the constant movement of devices. A series of simulation experiments are conducted to evaluate

the performance of the algorithm and the results obtained are efficient and acceptable compared to what obtains

in other prominent tasks allocation algorithms.

6 Future Works

For the future work, we will test the performance of algorithms with much larger task graphs and devise more

efficient heuristic algorithms to solve this task scheduling problem. We consider using a lightweight swarm

intelligence algorithm permitting the agents to learn from the environment and act autonomously. This may

equally help to manage many more devices in the TMC system. Also, we consider carrying out a priority-based

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20

Random 17 11 22 15 26 16 12 19 27 25 10 13 28 12 11 27 15 29 18 28

MinMax 19 18 20 18 18 22 21 18 20 17 20 19 17 20 16 18 17 22 23 21

Monge_K 18 20 19 17 21 19 20 19 19 20 19 18 19 21 22 20 18 20 22 20

AH_Algo 18 19 20 21 20 20 22 21 20 19 18 20 18 19 20 19 23 19 21 18

5% 5% 5% 5% 5% 5% 6% 5% 5% 5% 5% 5% 5% 5% 5% 5% 6% 5% 5% 5%

5% 5% 5% 4% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 6% 5% 5% 5% 6% 5%

5% 5% 5% 5% 5% 6% 5% 5% 5% 4% 5% 5% 4% 5% 4% 5% 4% 6% 6%
5%

4% 3%
6%

4%
7% 4% 3% 5% 7% 6%

3% 3% 7% 3% 3%
7% 4%

7% 5% 7%

0
10
20
30
40
50
60
70
80
90

100

AH_Algo Monge_K MinMax Random

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

145

scheduling for the tasks in a DAG, test them with existing real life mobility trace. This will offer a better

representation of the devices.

References

[1] W. Xu, "Huawei predicts 100 Billion internet connections globally by 2025" IndoAsian News Service,

Aug. 19, 2022.

[2] S. Nath and J. Wu, "Dynamic Computation Offloading and Resource Allocation for Multi-user Mobile

Edge Computing" in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1-6.

[3] B. Zhou and R. Buyya, "Augmentation Techniques for Mobile Cloud Computing: A Taxonomy, Survey,

and Future Directions", ACM Comput. Surv., vol. 51, no. 1, Art. 13, Jan. 2018, 38 pages.

[4] A. Sciarrone, I. Bisio, F. Lavagetto, T. Penner, and M. Guirguis, "Context awareness over transient

clouds" in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2015, pp. 1-5.

[5] M. Guirguis et al., "Assignment and collaborative execution of tasks on transient clouds", Ann.

Telecommun, vol. 72, no. 3-4, pp. 251-261, Jul. 2017.

[6] B. Hu, X. Yang, and M. Zhao, "Online energy-efficient scheduling of DAG tasks on heterogeneous

embedded platforms", J. Syst. Archit , vol. 140, p. 102894, 2023.

[7] M.W. Tian, S.R. Yan, W. Guo, A. Mohammadzadeh, and E. Ghaderpour, "A New Task Scheduling

Approach for Energy Conservation in Internet of Things", Energies , vol. 16, no. 5, p. 2394, 2023.

[8] S. Kadry, K. Abdulkareem, A. Lakhan, M. Mohammed, and A. Rashid, "Deadline Aware and Energy-

Efficient Scheduling Algorithm for Fine-Grained Tasks in Mobile Edge Computing", Int. J. Web Grid

Serv, vol. 18, no. 1, pp. 1-18, 2022.

[9] M. Mscs, "An efficient dynamic decision-based task optimization and scheduling approach for

microservice-based cost management in mobile cloud computing applications", Pervasive Mobile

Computing, vol. 92, 2023.

[10] A. A. Amer, I. E. Talkhan, R. Ahmed, and others, "An Optimized Collaborative Scheduling Algorithm

for Prioritized Tasks with Shared Resources in Mobile-Edge and Cloud Computing Systems", Mobile

Netw. Appl , vol. 27, pp. 1444–1460, 2022, doi: 10.1007/s11036-022-01974-y.

[11] C. Jin, J. Xu, Y. Han, J. Hu, Y. Chen, and J. Huang, "Efficient Delay-Aware Task Scheduling for IoT

Devices in Mobile Cloud Computing", Mobile Inf. Syst , vol. 2022, Art. 1849877, 10 pages, 2022.

[12] R. Alakbarov, "An Optimization Model for Task Scheduling in Mobile Cloud Computing", IJCAC, vol.

12, no. 1, pp. 1-17, 2022.

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

146

[13] J. Guo, Y. Liu, B. Yang, B. Xiao, and Z. Li, "Energy-Efficient Dynamic Computation Offloading and

Cooperative Task Scheduling in Mobile Cloud Computing", IEEE Trans. Mobile Comput , vol. 18, no.

2, pp. 319-333, Feb. 2019.

[14] Z. A. Jaaz, S. A. Abdulrahman, and H. M. Mushgil, "A dynamic task scheduling model for mobile cloud

computing", in Proc. 9th Int. Conf. Electr. Eng., Comput. Sci. Informat. (EECSI), Jakarta, Indonesia,

2022, pp. 96-100.

[15] P. Singh, P. Singh, S. Rajpoot, and D. P. Singh, "Study and Analysis of Offloading in Mobile Cloud

Computing", in Proc. Int. Conf. Technol. Advancements Innovations (ICTAI), Tashkent, Uzbekistan,

2021, pp. 280-284.

[16] X. Liu, J. Liu, and H. Wu, "Energy-Efficient Task Allocation of Heterogeneous Resources in Mobile

Edge Computing", IEEE Access, vol. 9, pp. 119700-119711, 2021.

[17] E. Soares, P. Brandão, R. Prior, and A. Aguiar, "Experimentation with MANETs of Smartphones",

arXiv:1702.04249v1 [cs.NI], Feb. 2017.

[18] I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, M. Imran, and S. Guizani, "Mobile ad hoc cloud: A survey",

Wireless Commun. Mobile Comput , vol. 17, pp. 1607-1625, 2017.

[19] S. C. Shah, "A Mobile Ad hoc Cloud Computing and Networking Infrastructure for Automated Video

Surveillance System", J. Comput. Sci. Tech. Rep , vol. 6, 2017.

[20] M. Guirguis et al., "Assignment and collaborative execution of tasks on transient clouds", Ann.

Télécommun, vol. 73, no. 3-4, pp. 251-261, 2018.

[21] I. Bisio, F. Lavagetto, A. Sciarrone, T. Penner, and M. Guirguis, "Context-awareness over transient cloud

in D2D networks: energy performance analysis and evaluation", Trans. Emerg. Telecommun. Technol

, vol. 28, no. 2, 2017.

[22] A. Sciarrone, I. Bisio, F. Lavagetto, T. Penner, and M. Guirguis, "Context Awareness over Transient

Clouds", in Proc. IEEE Global Commun. Conf. (GLOBECOM) , 2015, pp. 1-5.

[23] T. Penner et al., "Transient clouds: Assignment and collaborative execution of tasks on mobile devices,"

in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2014, pp. 2801-2806.

[24] T. Penner et al., "Demo: Transient clouds", in Proc. Int. Conf. Mobile Comput. Appl. Serv.

(MobiCASE), 2014, pp. 153-154.

[25] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, "Exploiting Massive D2D Collaboration for Energy-

Efficient Mobile Edge Computing", in Sustainable Green Networking and Computing in 5G Systems:

Technol., Economics, Deployment, 2017.

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

147

[26] T. F. Ndambomve, F. Mokom, and K. D. Taiwe, "A Dynamic Application Partitioning and Offloading

Framework to Enhance the Capabilities of Transient Clouds Using Mobile Agents", Int. J. Comput ,

vol. 40, no. 1, pp. 109-126, 2021.

[27] M. Shahzamal, "Lightweight Mobile Ad-Hoc Routing Protocols for Smartphones", Macquarie

University, Sydney, Australia, Apr. 2018.

[28] IEEE Standard for Information Technology—Telecommunications and Information Exchange Between

Systems Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-2012, pp.

1–2793, Mar. 2012.

[29] F. Gu, J. Niu, Z. Qi, and M. Atiquzzaman, "Partitioning and offloading in smart mobile devices for

mobile cloud computing: State of the art and future directions", J. Netw. Comput. Appl , vol. 85, pp. 1-

23, 2018.

[30] A. Lakhan et al., "Dynamic Application Partitioning and Task-Scheduling Secure Schemes for Biosensor

Healthcare Workload in Mobile Edge Cloud", Electronics , vol. 10, p. 2797, 2021.

[31] Q.H. Nguyen and F. K. Hussain, "Smart Mobile Edge Computing for Wireless Sensor Networks: Energy

Efficient Task Offloading Strategies", in Proc. IEEE Global Commun. Conf. (GLOBECOM) , 2022,

pp. 281-285.

[32] Z. Wei, X. Yu, and L. Zou, "Multi-Resource Computing Offload Strategy for Energy Consumption

Optimization in Mobile Edge Computing," Processes , vol. 10, no. 1762, 2022, doi:

10.3390/pr10091762.

[33] R. Tahboub and F. Warasna, "Security issues in Mobile Cloud Computing Frameworks based on Mobile

Agents," Deanship of Graduate Studies and Scientific Research, Palestine Polytechnic University,

Hebron, Palestine, 2015.

[34] X. Liu, C. Yuan, Z. Yang, and Z. Zhang, "Mobile-agent-based energy-efficient scheduling with dynamic

channel acquisition in mobile cloud computing," J. Syst. Eng. Electron. , vol. 27, no. 3, pp. 712–720,

Jun. 2016.

[35] Q. Wang, Y. Mao, Y. Wang, and L. Wang, "Computing task offloading based on multi-cloudlet

collaboration," Comput. Appl. , vol. 40, pp. 328–334, 2020.

[36] S. Ghasemi-Falavarjani, M. Nematbakhsh, and B. S. Ghahfarokhi, "Context-aware multi-objective

resource allocation in mobile cloud," Comput. Electr. Eng. , vol. 44, pp. 218-240, 2015, doi:

10.1016/j.compeleceng.2015.02.006.

International Journal of Computer (IJC) - Volume 51, No 1, pp 106-148

148

[37] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, "An Online Algorithm for Task Offloading in

Heterogeneous Mobile Clouds", ACM Trans. Internet Technol. , vol. 18, no. 2, Art. 23, 25 pages, Jan.

2018, doi: 10.1145/3122981.

[38] V. Balasubramanian, K. Kroep, K. C. Joshi, and R. V. Prasad, "Reinforcing Edge Computing with

Multipath TCP Enabled Mobile Device Clouds," 2019.

[39] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, "Exploiting Massive D2D Collaboration for Energy-

Efficient Mobile Edge Computing," IEEE Wireless Commun. , Aug. 2017, doi:

10.1109/MWC.2017.1600321.

[40] S. C. Shah, "A Mobile Ad hoc Cloud Computing and Networking Infrastructure for Automated Video

Surveillance System," J. Comput. Sci. Tech. Rep. , vol. 6, 2018.

[41] C. Tang, S. Xiao, X. Wei, M. Hao, and W. Chen, "Energy-efficient and Deadline-satisfied Task

Scheduling in Mobile Cloud Computing," in Proc. IEEE Int. Conf. Big Data Smart Comput. , 2018.

[42] S. M. Kak, P. Agarwal, and M. A. Alam, "Task Scheduling Techniques for Energy Efficiency in the

Cloud", EAI Endorsed Trans. Energy Web , vol. 9, no. 39, Jun. 2022, doi: 10.4108/ew.v9i39.1509.

[43] H. Wu, "Multi-Objective Decision-Making for Mobile Cloud Offloading: A Survey" IEEE Access , Feb.

28, 2018.

[44] H. Cui, J. Zhang, C. Cui, and Q. Chen, "Solving large-scale assignment problems by Kuhn-Munkres

algorithm", in Proc. 2nd Int. Conf. Adv. Mech. Eng. Ind. Inform. (AMEII), 2016.

[45] H. W. Kuhn, "The Hungarian method for the assignment problem", Naval Res. Logistics Quart. , vol. 2,

pp. 83–97, 1955.

[46] A. Ali, M. M. Iqbal, H. Jamil, F. Qayyum, S. Jabbar, O. Cheikhrouhou, M. Baz, and F. Jamil, "An

Efficient Dynamic-Decision Based Task Scheduler for Task Offloading Optimization and Energy

Management in Mobile Cloud Computing," Sensors , vol. 21, no. 13, p. 4527, 2021.

[47] S. Nath and J. Wu, "Dynamic Computation Offloading and Resource Allocation for Multi-user Mobile

Edge Computing" in Proc. IEEE Global Commun. Conf. (GLOBECOM) , 2020.

[48] G. A. Mills-Tettey, A. Stentz, and M. B. Dias, "The Dynamic Hungarian Algorithm for the Assignment

Problem with Changing Costs", Carnegie Mellon University, Jul. 2007.

