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Abstract 

In this research, we address the essential problem of achieving energy-efficient task allocation, which is a vital 

building block of cyber foraging on a transient mobile cloud. The goal is to minimize the total energy consumption 

for collaborative task executions among mobile devices in a multi-hop mesh network constructed on a mobile 

agent-based framework. Accordingly, we propose an energy-efficient task allocation problem formulation that 

takes into account the required restrictions. Next, we develop an optimal task allocation solution based on the 

modification of the Kuhn-Munkres algorithm by leveraging on the structural properties of the problem. We further 

evaluate the effectiveness of the suggested task allocation scheme through numerical study on a simulated system. 

The simulation reveals a performance gain on energy consumption reduction over other widely used task 

assignment algorithms. 
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1. Introduction 

With their ever-evolving capabilities, mobile devices are now able to access an incredible amount of data and 

information via apps, email, computations and storage on-the-go, with the concept of Mobile Cloud Computing 

(MCC). The advent of mobile cloud computing has paved the way for quicker, more affordable solutions that 

provide security and flexibility. Huawei envisions that by 2025, the number of terminal devices connected to the 

Internet will be close to 100 billion, and a large majority of these devices will be mobile phones [1]. This reveals 

the prominent need for Mobile Cloud Computing as it enables users to work more effectively, given that mobile 

devices are still limited in compute and energy resources [2], so much so that they are unable to completely execute 

computation intensive applications on their own.  

Among the various types of MCC are Transient Mobile Clouds (TMC) [3]. These are temporal clouds that enable 

nearby mobile devices to form an ad hoc network and advertise their capabilities as cloud services. This is 

achieved by leveraging the idle resources of nearby mobile devices (processing, storage, and communication), 

creating a distributed cloud infrastructure that can be used to deliver services to users [4]. These services can be 

offered to other devices in the temporary smartphones ad hoc network. One of the main advantages of transient 

mobile clouds is that they can be set up quickly and easily, without the need for a central cloud infrastructure or 

a fixed network. This makes them particularly useful in situations where traditional cloud computing may not be 

available or feasible, such as in remote locations, crowded areas with limited connectivity, or during disasters [9]. 

Meanwhile, their main disadvantage is the ephemeral nature of the cloud structure, given that it often changes due 

to the mobile devices entering and leaving the network [5]. Transient mobile clouds can be used to provide a 

variety of services, including temporal data storage, content distribution, and computation offloading. They can 

also be used to improve the performance of existing cloud services by providing additional resources or by caching 

frequently used data. Furthermore, because the mobile devices are close to one another in a geographically 

constrained environment, they are more likely to share interests and have social and context awareness, which is 

useful for a variety of applications [4]. This awareness is more difficult to use with distant clouds. By utilizing the 

collective resources of the group, devices are no longer constrained by their local hardware and software 

capabilities. TMC systems harness the ubiquitous nature of mobile devices along with their ever-increasing sets 

of capabilities in providing a rich computing platform. Overall, transient mobile clouds are an innovative approach 

to cloud computing that leverages the resources of mobile devices to create a flexible and dynamic cloud 

infrastructure.Among the various services provided by transient mobile clouds, Computation Offloading is a key 

activity. It seeks to increase the functionality of mobile systems by sending some of the computational work to 

distant devices in the cloud network. This process is carried out by assigning a part of the mobile devices' tasks, 

distributing them through the network and running them on the assigned devices [6]. We focus our interest on 

Task assignment, which is a well-studied problem with many proposed algorithms [7 - 16]. In these algorithms, 

each device provides a cost estimate for each task it can run. The aim of a task assignment algorithm is to find the 

assignment with the lowest overall cost in time and/or energy consumption. This will permit the requesting device 

to execute most of its tasks efficiently without depending on Internet resources. Therefore, designing efficient 

task assignment strategies is one of the ways to enhance the computation offloading experience of mobile users 

in the Transient mobile cloud systems. 
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2. Overview of Techniques Related to Transient Mobile Clouds 

Transient mobile clouds have the potential to alleviate the internet connectivity delay present in most MCC 

solutions, and more precisely Mobile Edge Cloud Computing solutions, through the creation of an ad hoc network 

by nearby edge devices [17] and the subsequent offloading of some tasks (Cyber Foraging) to selected devices. 

Substantial study has been done in the field of transient mobile clouds as a result of the recent major increases in 

the numbers, kinds, and capabilities of mobile devices [20 - 25]. For this purpose, three aspects are considered in 

setting up these clouds: Network architecture, Code partitioning and offloading, Tasks scheduling mechanisms. 

2.1 Network architecture 

Transient mobile clouds currently have a number of restrictions that relate to their growth on a local network with 

a high number of devices and the control of the network instability brought on by the constant mobility of the 

devices. Given that a considerable quantity of mobile devices is needed to constitute an efficient cloud system, 

the authors in [26] argued that setting the devices into a multi-hop ad-hoc network will permit to have access to 

greater resources even in case the devices requested to serve are very distant from the requesting device. Terry 

Penner [20] designed a framework for Assignment and Collaborative Execution of Tasks on Mobile Devices in a 

Transient Cloud. That cloud utilizes the collective capabilities of the devices present, along with their social and 

context awareness, and that cannot be provided efficiently by the traditional clouds. In [24], they provided a real 

implementation on the Android platform using the Wi-Fi Direct framework. However, the work had the following 

limitations as per the network architecture: 

o In Wi-Fi Direct, only one device (called the Group Owner) acts as a router, and all of the other peer devices 

that connect to it create a single hop network. Also, any device in a group can only be a client in another 

group. However, this limits the possibility of expansion of the network and the size of the network to be 

a maximum of one hop from the Group Owner.  

o Secondly, because of the fact that every device must connect to the Group Owner, a significant disadvantage 

is that if the Group Owner leaves, the group is torn down and a new group must be established from 

scratch. This makes Wi-Fi Direct unsuitable as a basis for multi-hop networking. 

o Thirdly, the group owner is the hub device of the network that is responsible for maintaining the network’s 

state and it needs to have a stable connection with the client devices in the network to route tasks (code) 

and data. 

Therefore, their solution may hardly work on a multi-hop ad-hoc (mesh) network (MANET) with a very unstable 

connectivity between devices, which is normally the typical network for a realistic Transient Cloud [18]. 

Meanwhile, it is crucial to consider this network topology and its characteristics to produce an application 

framework which responds to the needs and the features of the TMC structure. 

Having adopted a multi-hop mesh network for the transient cloud, there is need to adapt to it a protocol that require 

minimal memory for routing table, less computing resources and generate less protocol control overhead, given 

the limited resources on mobile devices. The latest amendment of the 802.11 standard [28] provides the 
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Independent Basic Service Set (IBSS) mode that can be used for ad-hoc networking. It is commonly referred to 

as ad-hoc mode because it does not require any infrastructure to be in place. It can be used as a basis for mesh 

networking. In this mode, all nodes play similar roles, and any node can communicate directly with any other 

node within the network, as those nodes are also set to the IBSS mode, share the same Service Set Identifier 

(SSID) and are within its radio range. The IBSS mode itself, however, does not offer multi-hop capabilities. There 

is no provision for path discovery and selection, nor for relaying packets to nodes out of the radio range of the 

sender. In IBSS-based ad-hoc networks, these functions must be accomplished by an additional protocol, like 

BATMAN [27], usually at the network layer. Among all the existing protocols for MANETs, the Better Approach 

to Mobile Ad-hoc Network protocol (BATMAN) is used more often, reason being that it does not need to maintain 

full path to the destinations. Each node only collects and maintains the information about the best next hop towards 

all other nodes in the network. Every node collects this information through hello packets broadcast periodically. 

This makes the protocol suitable for storage constrained devices. Also, since this protocol depends only on hello 

packets to know the availability of nodes and does not broadcast topology change messages, the control overhead 

is low. For the purpose of this work, we have built a TMC simulation based on the BATMAN protocol on Repast 

Symphony. In the Figure 1 for example, we considered 14 devices that are constituted into a TMC network through 

the BATMAN protocol. Here, a device has access to other devices via a direct connection or a multi-hop (indirect) 

connection, and every connection may have a weight wij that represents the communication cost between the 

devices Di and Dj. 

 

 

 

 

 

 

 

 

Figure 1: Devices constituting a Multi-Hop Mesh Network using the BATMAN protocol 

2.2 Code partitioning and offloading 

Code partitioning and offloading constitute another issue on Transient mobile clouds [17] and they need to be 

properly addressed to match the requirements of such clouds set up on a multi-hop mesh network, otherwise the 

distributed computing process will be hardly effective for the Transient mobile Cloud.  
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2.2.1 Code partitioning  

With respect to code partitioning, there are several approaches. Bowen and his colleagues. [3] proposed a 

taxonomy of these approaches based on their strategies to break out application execution components into non-

offloadable and offloadable modules. A partitioning algorithm could be classified into either of two categories 

[29, 30]: (1) static: when it is fixed at development phase based on the static analyzer and dynamic profiling; and 

(2) dynamic: when it includes runtime information from different profilers, log files, and the interaction among 

components of the running application. Therefore, static approaches are often based on pre-specified annotation 

where developers annotate the candidate methods for offloading and leave the remaining to the framework. While 

the resulting partitions of static algorithms do not change in all executions, those of dynamic algorithms could be 

updated before each execution to adapt to environmental conditions and optimize offloading objectives. Because 

of that, though dynamic algorithms may have high overhead during the offloading process, we still opt for using 

a dynamic approach with Operating System (OS) partitioning considering the various and changing capabilities 

of the devices in the transient cloud and instability of the network structure.  

2.2.2 Code offloading 

One of the most typical methods to analyze and model code offloading for an application running on a smartphone 

is to use its call graph as generated by the OS, which is a Directed Acyclic Graph (DAG), that represents the 

relationship between the computational components of that application [6, 31, 32]. Normally, the nodes of the 

graph represent the procedures/functions of a program and the directed edges represent the 

communication/invocations dependency between them, as shown in Figure 2. Here, two dependency levels can 

be identified. A module cannot be executed until the execution of its parents is completed. On the other hand, all 

the modules in the same dependency level can be executed in parallel. The operating system on the smartphone 

generates this DAG for the application with each of the nodes (processing block) being light enough to be easily 

transported through the MANET and to be quickly executed. Furthermore, advanced analysis on the DAG can 

permit to group the modules into two parts: one part which is to run locally and the other part which is to be 

offloaded to the TMC devices. For example, some processing blocks with special hardware needs, such as camera, 

accelerometer, etc. should be running locally, while the blocks that need more of computation are offloaded.  

 

Figure 2: DAG with two identified dependency levels 

In [26], the study presents a transitory cloud-based framework that makes use of multi-agent systems to enable 

dynamic code offloading as well as to make it easier for an individual code block to be packaged in a Mobile 

Agent (MA), to travel around and be executed on one or more devices in the network. In Figure 1, under various 
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conditions, D1 may offload a task for execution to D7 by packaging it in a MA. That agent can hop through D11, 

D12, D13 to get to its destination; this depending on whether a route to D7 was recorded during the establishment 

of the network. Upon arrival at D7, if the task in the MA does not complete its execution there, it is repackaged in 

a MA alongside its current status and offloaded again to another device. It continues like that till the task is 

completed and returns to its origin. Therefore, as the number of hops and transitions of the MA increases, the 

communication cost and the energy consumed increase likewise. We adopt this multi-agent system strategy as 

presented in [26]. When designed and implemented, these intelligent mobile agents would work alone or with 

others, to successfully adapt to the frequent arrival and departure of devices in and out of the network [33, 34].  

2.2.3 Offloading Decision 

In considering a user application as a set of M processes forming a DAG, all the processes in the same dependency 

level can be executed in parallel. As such, the process that takes most time for execution ultimately gives the level 

execution time as it covers the execution time of all the processes in that level. Hence, greater number of processes 

in a dependency level decreases the overall execution time of the application. The total execution time of the 

application is the summation of execution times of all the levels and data transmission times between the modules. 

To determine the appropriate devices for the offloaded execution, given that the total execution time of the 

offloaded processes helps to define the performance of the TMC System, the receiving devices must have to fulfill 

the selection criteria. These criteria consider the computation power, energy, data rate, the memory usage and the 

disk usage and associativity time [39]. In several approaches [35,38], a device will be selected as a receiver if it 

can execute the task in less time compared to the sender device and it maintains a minimum data-rate with the 

sender. Moreover, it must have sufficient energy to execute the task and send the result back to the sender. During 

this execution and communication time, the two devices remain connected. However, this will not be suitable for 

this transient mobile cloud given that the devices are not necessarily directly connected to each other in the multi-

hop mesh and they may move out of the network due their mobility.In our approach based on [26], each device, 

through its MAZ, is responsible for maintaining the list of resources available on other devices it knows in the 

whole network (by a direct or indirect link given that it is a multi-hop mesh network). Some resources that are 

monitored here are the network bandwidth, the processor usage, the queuing delay. In our framework, each device 

monitors these three resources to make sure it has the latest usage information of other devices. In this regard, for 

the amount of energy, we consider a threshold value that needs to be available on a mobile device before it can 

receive an offloaded task, so that the device can still run its own compulsory activities (the minimal level of energy 

present on a device that exempts it from participating in the Transient cloud). In the same light, we may also 

consider a threshold for the amount of memory. With this information, each mobile device can make allocation 

decisions locally. Also, the queuing delay of a mobile device is frequently updated whenever a new task is 

received, so each mobile device has to periodically broadcast its queuing delay to inform all the devices of its 

status. By increasing the frequency of broadcast, the information collected by the tasks’ generators will be more 

accurate. Then, the MAZ on the sender will most likely make good allocation decisions, but at the cost of more 

control message overhead.  

The authors in [12] state that for offloading to be effective, the computation part of program must be significantly 

larger than its communication part. This implies that when one uses cyber foraging to improve response time or 
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energy consumption, the offloading mechanism would be more effective for applications requiring more 

computation than communication.  We illustrate a simple flowchart of cyber foraging on a requesting device in 

our TMC (See Figure 3). Therefore, large tasks requiring higher execution times make offloading more effective 

because the benefits of computation on a more powerful and faster surrogate outweigh the cost of communication. 

However, the constraints on mobile devices are due to their mobility as it restricts the size of tasks to be offloaded 

[18, 26, 32]. That is, if a task is too large to complete its execution before leaving the area in the networking 

coverage of a surrogate, offloading becomes very complex and time-consuming solutions such as check pointing 

and process migration would often be used. Therefore, a suitable offloading approach must specially consider the 

mobility nature of mobile devices and manage a trade-off between mobility and task size. We introduce a hand-

over strategy to further manage this trade-off. In this scenario therefore, the user might prefer to lower the bar of 

latency and constraints to favor general/local energy savings, as it is the case in our work. Also, in the TMC 

system we propose, the time and the energy spent for one task is the sum of the time and energy on each transition 

point (surrogate device) added to the communication time between transited surrogates in the network. 

  

Figure 3: Flowchart of cyber foraging on a requesting device in the TMC system 
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2.3 Tasks scheduling mechanisms 

When energy efficiency is taken into account, task scheduling becomes much more complicated but crucial. 

Execution overhead and scalability are major concerns in current research on energy-efficient task scheduling [7]. 

Because the cloud nodes need to respond quickly to real-time tasks and ensure the mobility management of nodes 

at the same time, the optimal task scheduling strategy needs to be selected to meet the low latency requirements 

of users. Also, based on the needs and the features of the TMC system, the algorithm for task assignment and 

execution should be derived to align with the framework described in [26], while taking into account some 

constraint conditions such as response time deadline, dependency between task, data transmission and energy 

cost. Actually, the objective of Task allocation scheme is to select an appropriate node for execution of a task as 

aiming to reduce time and/or energy consumption. The task allocation process usually consists of two steps: (1) 

Selection of nodes on which estimated task execution time is less than the task deadline and (2) Given the list of 

nodes selected in (1), allocate a task to a node on which estimated energy consumption is minimum. To estimate 

task execution time and energy consumption, models proposed in [31, 32, 40, 41] have been readjusted to the 

TMC context in view of the above problems. We present them in Section 3 below.  

In a nutshell, as presented in Figure 4, the user application plane builds the various tasks partitions, the framework 

plane packages the tasks in MAs and allocates them and finally the MAs are distributed to various devices over 

the network. Results of tasks are received via the planes in the reversed order, back to the user application.  

 

Figure 4: Stack Approach to tasks allocation and Execution on a TMC system 

3. Formulation of the Task Execution Problem 

As a global perspective, we first introduce the model to describe the resources of a TMC device for mobile task 

processing as follows. We consider the connectivity graph G1 = {N, E}, where the set of devices N is the vertex 

set and E = {(i,j) : eij = 1, ∀ i, j  N} is the edge set where eij = 1 if devices i and j can establish a direct link 

between themselves in the multi-hop mesh network.  

3.1 Evaluating Energy Consumption 

The computation cost constitutes the energy required by a given task to process on various devices. The 

communication cost is the energy required for transferring the agent, its data and control information between the 

PLANE 3: User Application partitions constituted as a DAG by 
the OS

PLANE 2: Proposed framework managed by the MAZ that 
packages tasks into MA and allocate to various devices 

PLANE 1: Multi-Hop Mesh Network over the BATMAN 
protocol
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mobile devices in the TMC System and then, the resulting data sent back to requesting device. Therefore, we have 

the considerations below. 

For a given mobile node ni that has been partitioned into tasks to execute either onsite or otherwise, we consider 

the following elements and their notations:  

{Ni} = {Ni}A U {Ni}U . This is the set of n mobile nodes (devices) known by ni in the TMC. 

The set of mobile nodes can be seen as a union of the sender node ni, the set {Ni}A of devices to which tasks of ni 

have been allocated and the set {Ni}U of devices unused by tasks of ni. 

{Ti} = {Ti}o U {Ti}L with {Ti}o = {Ti}par U {Ti}Seq. It is the set of m tasks of a given node ni. 

This set can be seen as the union of the set {Ti}L of tasks that are executed locally and the set {Ti}o of tasks that 

offloaded through agents. This later set is grouped into tasks that are executed parallelly in {Ti}par and others that 

are executed sequentially in {Ti}Seq as denoted by the operating system.  

The device ni has its CPU working frequency Wi (the total computation capacity in CPU cycles per unit time). Let 

µi be the current load of node ni (the percentage of currently occupied processing capacity) since device i may 

have some background load and/or run some unoffloadable tasks. Then the available processing capacity of ni is 

Ci = (1-µi)Wi. With this note, we have the considerations given in Table 1. 

Table 1: Parameters considered for the TMC system 

 

 

 

 

 

 

 

 

3.1.1 Local Execution of a given task k on a node ni   

Execution Time:  𝐸𝑇𝑖𝑖𝑘
𝑒 =

𝑆𝑖𝑘

𝐶𝑖
+ 𝑄𝑖𝑘   (1) 

Parameter Description 

Dij Data Rate from ni to nj over the network 

ai : Processing Energy Consumption on ni per time unit;  

bi : Transmission Energy Consumption on ni  per time unit;                      

Pt(ni) : Transmission power of ni;  

Pr(nj): Reception Power of nj 

Bj : Average bandwidth on node ni 

β: Factor of the throughput and packet loss  

 For a given tk(ni) (task k of node ni) 

Iik : Input data size of task k 

Oik : Output data size of task k 

Sik : Size of task k (amount of required computing) 

Qik : Queuing delay of task k 
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Energy used during Computation: 𝐸𝐶𝑖𝑖𝑘
𝑒 = 𝑎𝑖𝐸𝑇𝑖𝑖𝑘

𝑐  (2) 

Time spent for data communication (given that the task may require some input data or send some output through 

the network):   

𝐷𝑇𝑖𝑘
𝑑 =

𝐼𝑖𝑘+𝑂𝑖𝑘

𝐷𝑖
+ 𝛽   (3) 

Energy used during Data communication: 𝐸𝐶𝑖𝑖𝑘
𝑑 = 𝑎𝑖𝐷𝑇𝑖𝑘

𝑑   (4) 

Total Energy Consumption for the execution of task k locally on a given node:  𝐸𝐶𝑖𝑖𝑘
𝑙 = 𝐸𝐶𝑖𝑖𝑘

𝑒 + 𝐸𝐶𝑖𝑖𝑘
𝑑  (5) 

3.1.2 Offloaded Execution of task k of node ni in an agent 

𝑁[𝑡𝑘] is the ordered set of all the nodes nj that the MA having task k goes through in order to complete its 

execution after leaving the node ni. Therefore, {N}A = ⋃ ][
k

tN
𝑛
𝑘=1 . (6) 

Supposing that to get to a node nj, the MA hops through the nodes {nA1, nA2, …, nAk}as determined by the BATMAN 

protocol, we have that the energy used for the data transfer of the agent having task k from ni through various nj 

nodes is: 

𝐸𝐶𝑖𝑗𝑘
𝑑 = ∑ {(

𝑝𝑡(𝑛𝐴1)+𝑝𝑟(𝑛𝐴2)

𝐷𝐴1,𝐴2
𝐼𝑖𝑘 +

𝑝𝑡(𝑛𝐴2)+𝑝𝑟(𝑛𝐴1)

𝐷𝐴2,𝐴1
𝑂𝑖𝑘) + ⋯ + (

𝑝𝑡(𝑛𝐴𝑘)+𝑝𝑟(𝑛𝑗)

𝐷𝐴𝑘,𝑗
𝐼𝑖𝑘 +

𝑝𝑡(𝑛𝑗)+𝑝𝑟(𝑛𝐴𝑘)

𝐷𝑗,𝐴𝑘
𝑂𝑖𝑘)}𝑗∈{𝑁[𝑡𝑘]}   (7) 

The energy used to execute the offloaded agent’s task through various nj nodes is:  

𝐸𝐶𝑖𝑗𝑘
𝑒 = ∑ (𝑎𝑗

𝑆𝑖𝑘

𝐶𝑗
+ 𝑏𝑗

(𝐼𝑖𝑘+𝑂𝑖𝑘)

𝐷𝑗,𝑛𝑒𝑥𝑡
)𝑗∈{𝑁[𝑡𝑘]}   (8)   

where next indicates the succeeding device on the route back to ni to deliver the output. 

The time used for executing the offloaded agent’s task is: 

𝐸𝑇𝑖𝑗𝑘
𝑒 = ∑ (

𝑆𝑖𝑘

𝐶𝑗
+

(𝐼𝑖𝑘+𝑂𝑖𝑘)

𝐷𝑗.𝑛𝑒𝑥𝑡
+ 𝑄𝑖𝑘)𝑗∈{𝑁[𝑡𝑘]}   (9)  

where next indicates the succeeding device on the route back to ni to deliver the output. 

The total energy needed for the offloaded agent having task k from ni through various nj nodes is  

𝐸𝐶𝑖𝑗𝑘
𝑜 = 𝐸𝐶𝑖𝑗𝑘

𝑒 + 𝐸𝐶𝑖𝑗𝑘
𝑑  .  (10) 

The total energy needed for all the tasks of ni: 𝐸𝐶(𝑛𝑖) = 𝐸𝑝𝑎𝑟𝑡 + 𝐸𝐼 + 𝐸𝑚𝑒𝑟𝑔𝑖𝑛𝑔 + ∑ (𝐸𝐶𝑖𝑖𝑘
𝑙 )𝑡𝑘∈{𝑇}𝑙

+

∑ (𝐸𝐶𝑖𝑗𝑘
𝑜 )𝑡𝑘∈{𝑇}𝑜,𝑛𝑗∈{𝑁}𝐴

        (11) 
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where 𝐸𝐼 = 𝑝𝐼𝑑𝑙𝑒 × ∑ 𝐸𝑇𝑖𝑗𝑘
𝑒

𝑡𝑘∈{𝑇}𝑜,𝑛𝑗∈{𝑁}𝐴
− 𝑎𝑖 × ∑ (𝐸𝑇𝑖𝑖𝑘

𝑒 )𝑡𝑘∈{𝑇}𝑙
   (12); 

 with EI being the energy spent by node ni when it is idle, that is the amount of energy spent on locally executed 

tasks subtracted to the amount of energy it saves on offloaded tasks. 𝐸𝑝𝑎𝑟𝑡 is the energy used to partition the 

application into tasks according to its DAG. 𝐸𝑚𝑒𝑟𝑔𝑖𝑛𝑔 is the energy used to merge the results of various tasks 

executions. These last two values can be approximated during the simulation. 

The total time needed for all the tasks of ni to complete their execution:      

       𝐸𝑇(𝑛𝑖) = ∑ (𝐸𝑇𝑖𝑖𝑘
𝑙 )𝑡𝑘∈{𝑇}𝑙

+ ∑ (𝐸𝑇𝑖𝑗𝑘
𝑒 )𝑡𝑘∈{𝑇}𝑠𝑒𝑞

+ 𝑀𝑎𝑥𝑡𝑘∈{𝑇}𝑝𝑎𝑟
(𝐸𝑇𝑖𝑗𝑘

𝑒 ) (13)   

where  𝑛𝑗 ∈ {𝑁}𝐴 

3.2 Mathematical model of the energy minimization problem 

By taking into account the above formulations, our objective is to minimize the overall energy consumption of 

the task executions by all the devices ni, which is formally described as follows: 

min ∑ ∑ 𝜆𝑖𝑖𝑘𝐸𝐶𝑖𝑖𝑘
𝑙𝑥𝑖

𝑘=1
𝑛
𝑖=1 + (1 − 𝜆𝑖𝑖𝑘) ∑ ∑ 𝜆𝑖𝑗𝑘𝐸𝐶𝑖𝑗𝑘

𝑜𝑚𝑖−𝑥𝑖
𝑘=1

𝑛
𝑖=1,𝑗≠𝑖   (14) 

       over xi  

       subject to the constraints: 

λijk = 0, ∀eij ∉ E, ∀ k ∈ M  (15) 

∑ j∈N λijk = ɛi, ∀ i ∈ N, ∀ k ∈ M (16) 

∑ j∈N λijk  ≤ 1, ∀ j ∈ N, ∀ k ∈ M (17) 

λijk ∈ {0,1}    (18) 

𝑥𝑖 ∈ [1,m]   (19) 

x = ∑ 𝑥𝑖
𝑛
𝑖=1  , i∈N   (20) 

Where, 

ɛi :  binary indicator that is 1 if device i has a task to be executed and 0 otherwise  

λijk : binary decision variable for task allocation, which is 1 if the task k of device i is offloaded to execute on 

device j and 0 otherwise (λiik  local execution on device i ).  

mi : Number of tasks generated by the DAG on Device i 
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Constraint (15) warrants that the task allocations are determined according to the feasible TMC connectivity. 

Constraint (16) denotes that if a device has an offloadable task, this task should be assigned.  

Constraint (17) denotes that during a task offloading round a device will execute at most one task at a time (which 

could either be its own task or an offloaded task from a nearby device). 

Constraint (18) follows from the context. 

Constraint (19) denotes the tasks to be executed locally on each device i. 

Constraint (20) denotes the number of locally executed tasks in the whole TMC system. 

3.3 Adapted Kuhn-Munkres (Hungarian) Method for Optimal Task Assignment 

We next propose the optimal solution for the problem in section 3.2 via a task assignment policy. At first glance, 

one might regard this optimization problem as the classical NP-hard task allocation problem, meaning that finding 

and concluding the best answer in a finite period is practically impossible [30, 42]. It has been demonstrated in 

the literature, that this kind of task allocation problem can be solved optimally using the Kuhn-Munkres 

(Hungarian) method [5, 25, 35]. It is one of the methods used in assigning tasks to each worker device in the 

system that achieves an optimal assignment in which the aggregate cost is minimized, and whereby every task 

must be assigned to only one device. It considers a bipartite graph for the possible allocations (See Figure 5 (a)), 

derived from a 2-dimensional square matrix (See Figure 5 (b)) in which the rows Di represent the devices and the 

columns Ti represent the tasks.  An entry cij denotes the cost of assigning task j to device i. Its running complexity 

is O(n3), where n is the number of tasks, and equal to the number of worker devices.  

 

(a) 

 

 

 

(b) 

Figure 5: (a) A bipartite graph of all possible allocations, (b) A matrix of edge weights 

Cij T1 T2 T3 

D1 5 8 6 

D2 7 9 7 

D3 6 4 4 

D3 

D1 

D2 T2 

T1 

T3 
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However, when dealing with a TMC system, there often arise the need to manage more tasks than devices at a 

time, and then more devices than tasks at another time. It varies based on tasks that complete their execution, 

devices that run out of resources and/or, devices that move into or out of the transient cloud.  In those situations, 

we may want to assign multiple tasks to the same device, or a device might not be assigned any task. Therefore, 

unlike the Classical Hungarian method, it is clearly important for the assignment algorithm to achieve certain 

properties such as load balancing and/or collocating tasks. Hence, we propose a modification to the Hungarian 

method to make it suitable for TMC systems. 

3.3.1 Cost allocation in the graph for a given device 

The Hungarian algorithm assumes the existence of a bipartite graph, G2 = {D, T, E} where D is the set of devices 

that the sender has access to through the network, T is the set of offloadable tasks of the sender, and E is the set 

of edges. The edge weights may be stored in a matrix. Given that each device runs the allocation scheme for the 

tasks it has, the devices it can access and on the basis of the data it has gathered in the TMC system, this matrix 

is built in the algorithm according to the following cases: 

Case 1: To indicate that the device i can do a local allocation of the task, for an edge that connects device i to its 

own tasks, we set the weight cik =𝐸𝐶𝑖𝑖𝑘
𝑙 . This means that for a device i running the allocation scheme, row i will 

have the energy consumption of local execution for each corresponding offloadable task of this device. 

Case 2: For an edge that connects tasks of device i with another device j, we set the weight cjk = 𝐸𝐶𝑖𝑗𝑘
𝑜 . This means 

that for a device i, row j will have the energy consumption of offloaded execution from device i to device j for 

each corresponding offloadable task of the device i. 

Case 3: If the number of tasks is less than the number of devices, some of them cannot be assigned any job, so 

that we have to introduce one or more dummy tasks of size zero to convert the unbalanced assignment problem 

to the balanced assignment problem that can now be solved classically. The devices assigned with the dummy 

tasks are assigned are then left out of the final result. 

Case 4: If the number of tasks is more than the number of devices, some of them cannot be assigned any device. 

However, if we introduce one or more dummy devices to balance the problem, the assignment algorithm will 

cause the starvation of larger tasks. Therefore, we rather iteratively select an equal number of tasks to assign to 

the devices until all tasks are assigned. The selection may be based on the priority given by the queuing delay, the 

level of dependency in the DAG, the remaining time for the connection due to the mobility. 

Case 5 (Load Balancing): If a task has already been assigned to a given device j, device i should have the ability 

to inflate the costs of other tasks by some factor (i.e., multiply the weight on already assigned devices by 2) when 

considering device j again for the assignment. This is in other to avoid overworking and congestion, long waiting 

time, and even distribution of tasks.  
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3.3.2 The modified algorithm  

Here, we modify the Hungarian Algorithm on a bipartite graph as proposed by [44, 45] for the reasons already 

presented. 

Adapted Hungarian Algorithm (AH_Algo)  

Given that the variables ui are assigned to each node di and dual variables vj are assigned to each node tj, the 

minimization of the assignment problem is feasible when ui + vj ≤ cij. 

Input: A bipartite graph G2 = {D, T, E} (where |D| = n, |T| = m) and an n × m matrix of edge costs C  

Output: An optimum matching graph M  

Let n = number of devices (nodes) and m the number of agents 

If m >= n then do 

r  n 

While (r>=0 and m>=n) do 

Select n tasks according to Case 4 

Run the AssignTask() algorithm for the n tasks and n nodes 

Remove from A the agents that have been assigned 

Run Case 5 for Load Balancing 

m  m – n, r  m%n 

Endwhile 

Run the AssignTask() algorithm for the r tasks and n nodes according to Case 3 

Else Run the AssignTask() algorithm for the m tasks and n nodes according to Case 3 

AssignTask():  

Let q = min (n,m) 

1. Perform initialization of the matching:  
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(a) Begin with an empty matching, M0 = ∅.  

(b) Assign feasible values to the dual variables αi and vj  as follows:  

∀ di ∈ N, ui = 0,  ∀ ti ∈ T, vj = mini(cij)   

2. Perform q stages of the section in Phase.  

3. Output the matching after the qth stage: M = Mq.  

Phase:  

An alternating path: a path through the graph such that each matched edge is followed by an unmatched edge 

and vice-versa  

An augmenting path: an alternating path that begins and ends with an exposed node.  

A Hungarian tree: All alternating paths originating from a given unmatched node. 

Searching for an augmenting path in a graph involves exploring these alternating paths in a breadth-first manner, 

and the process can be called growing a Hungarian tree.  

An Equity Graph is made up of edges where ui + vj = cij. 

1. Designate each free (unmatched) node in N as the root of a Hungarian tree.  

2. Grow the Hungarian trees rooted at the free nodes in the equality subgraph. Designate the indices i of nodes 

di encountered in the Hungarian tree by the set I∗, and the indices j of nodes tj encountered in the Hungarian tree 

by the set J∗. Go to step(4) if an augmenting path is found. Otherwise, if the Hungarian trees cannot be grown 

further, continue to step(3).  

3. Modify the dual variables u and v as follows to add new edges to the equality subgraph. Then resume step(2) 

to continue the search for an augmenting path with 

θ = 1/2 min (cij - ui - vj), i∈ I∗, j∉ J∗ 

ui ← ui + θ if i∈ I∗ and ui ← ui − θ if i∉ I∗ 

vj ← vj − θ if j∈ J∗ and vj ← vj + θ if j∉ J∗ 

4. Augment the current matching by exchanging matched edges with unmatched edges along the selected 

augmenting path. That is, Mk (the new matching at stage k) is given by (Mk−1 − P) ∪ (P − Mk−1), where Mk−1 is the 

matching from the previous stage and P is the set of edges on the selected augmenting path.  
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3.3.3 Dynamic Reallocation of tasks 

Given the plausible unpredictability of user mobility and the variability of devices’ resources states, optimal 

allocation decisions must be made dynamically at runtime in order to adapt to new conditions and so on. Mobility 

alone will cause the quick change of some costs cij in the matrix for the mobile devices (workers) that move. 

Therefore, dynamic reallocation seems more appropriate, but it has an associated higher communication overhead, 

which should be taken under control [46, 47]. In the Adapted Hungarian Algorithm used here, the costs on a given 

column or row is updated in the matching matrix. In this case, if a change happens on a device, there is no need 

to restart the algorithm from start, since the current matrix represents the optimal assignment before the change 

of costs in one node. It is then more effective to use the Dynamic Hungarian algorithm proposed by [48]. It uses 

the current optimal assignment matrix to produce a new complete matching matrix M representing an optimal 

solution to the problem with the changed edge costs.  

Optimized Version of the algorithm to integrate dynamic reallocation (Dynamic_Hungarian ) 

Input: 

• An optimal solution to the above assignment problem, comprising a complete matching M∗, and the final values 

of all dual variables ui and vj . 

• k cost changes, each of which can be a row i∗, a column j∗, or a single entry ci∗j∗ of the cost matrix. 

Output:  

A new complete matching, M, representing an optimal solution to the problem with the changed edge costs.  

Perform initialization: For each of the k cost changes  

• If a single value ci∗j∗ of the cost matrix changed from cold to cnew:  

(a) If cnew > cold and di∗ is matched to tj∗, then remove the edge (di∗ , tj∗) from the matching M∗. 

(b) Otherwise, if cnew < cold and uj∗ + vi∗ > cnew  

       – Assign uj∗ = minj (ci∗j − vi)  

       – If di∗ is not matched to tj∗ , remove the edge (di∗ , mate(di∗)) from the matching M∗ .  

       [Note: We may stochastically decide to modify di∗ rather than tj∗ in this case. If tj∗ is modified, then the edge 

(mate(tj∗), tj∗) should be removed from the matching instead of (di∗ , mate(di∗))] . 

• Otherwise, if a row i∗ of the cost matrix changed:  
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     (a) If di∗ is matched, remove the edge (di∗ , mate(di∗)) from the matching M∗ .  

     (b) Assign ui∗ = minj (ci∗j − vj)  

• Otherwise, if a column j∗ of the cost matrix changed:  

     (a) If tj∗ is matched, remove the edge (mate(tj∗), tj∗ ) from the matching M∗ .  

           (b) Assign vj∗ = mini(cij∗ − ui)  

2. Let k∗ be the number of edges removed from the matching in the initialization phase of the algorithm (note k∗ 

≤ k). Perform k∗ iterations of Phase from the AH_Algo. 

Output the resulting matching M.  

3.3.4 Evaluating the Send_Over benchmark for a given agent hosting task Tk originating from a node ni 

With the continual movement of the mobile users and the progressive change of status of the resources in the 

devices over time, the costs cij may change often, and this even faster if the connected devices move in divergent 

directions or out of reach. For this reason, there is need to check at every time slice Ts, the devices that have 

received offloaded agents and to measure the remaining connection time Tc on the links that they have in the 

network. We have that: Tc = (D-Dms)/Sm , Dms = C * TRTT ,  C = 300 * 106 m/s, with D: Max Distance Coverage 

Range of the Wifi = [80 – 200]m (in practice), Dms : Average sampling distance between 2 given devices, TRTT : 

Round Trip Time interval, C: Standard speed of the wave, Sm : Current Speed of the device. 

An agent executes its tasks on a device as long as that device has sufficient resources and the connection time is 

valuable. When the conditions of execution are no longer satisfactory, the agent needs to move to another device 

on the basis of the allocation algorithm. Here, we consider the energy level of the device measured at every time 

slice Ts and the connection time, in order to determine the Send_Over benchmark (which is the threshold for the 

agent to move to another device). The lowest limit energy level for any device to be considered for participation 

in the network may be 40%. As indicated in Table 2, we consider 2 metrics (Contact Time, Energy used) measured 

for every time period Ts to decide on the Send_Over of the agent concerned (see line 1 to line 4). For this purpose, 

we assume some practical values including 𝑇𝑠 = 𝐸𝑇(𝑛𝑖) ×
1

𝜕
, 𝑤𝑖𝑡ℎ 𝜕 = 𝑙𝑛( 𝑏𝑖) + 𝑙𝑛( 𝑇𝑐) . 
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Table 2: Metrics used for the Send_Over 

Energy Consumed Connection Time Send_Over Benchmark 

1) Low I Average 

2) Low I Average 

3) Low I Average I High 

4) High 

High  

Average  

Low 

Low I Average I High 

Low 

Average 

High 

High 

Low = [0,25[ 

Average = [25,50[ 

High = [50, ---[ 

Low = [0, Ts + 5[ 

Average = [Ts + 5, Trt + 10[ 

High = [Trt + 10, ---[ 

  

E_Level Energy Level in the Battery (%) 

Threshold Low Average High 

40 41- 60 61-80 81- 100 

To design the Send_Over algorithm, we consider the following values:  

Trt : Remaining Time to avail the Service 

Elevel : Energy Level in the Battery 

Ts : Time slice after which connection time and energy used is measured 

SS: Average received signal strength = AVGi ɛ Ts  RSSI[i]    

RSSI[1,…, i] : Array of signal strength values collected overtime interval Ts. 

Essentially, the Send_Over is triggered when its benchmark is high. However, If Send_Over benchmark = Average 

and E_Level = low and SS < SS
Threshold

 and T
rt 

> T
c
 , then Send_Over is equally triggered. 

 

 

 

 

 

 

Send_Over Algorithm 

Input:  
Agent id carrying Task k 

Start:  
T

rt 
= Initial total Execution Time 

While T
rt 

> 0  

 For i1, T
s 
  Measure RSSI[i] 

 Compute Energy level, SS, Contact Time 

 Get Send_Over_Benchmark 

 If (Send_Over = High) and (SS < SS
Threshold

) then AH_Algo() 

 ElseIf (Send_Over = Average) and ((E_Level = Low) or (SS < SS
Threshold

)) and (T
rt 

> T
c
) then AH_Algo() 

 Else do nothing 

 EndIF 

EndWhile 
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4. Simulation and Results 

4.1 General Considerations 

To evaluate the effectiveness of the solution proposed, we implement a simulation environment suitable for this 

framework’s setting with the help of mobile agents. We used the Repast Symphony 2.9.1 software which is an 

agent-based modelling and simulation system. It is open source, mainly java-based, richly interactive, expert 

focused. The operating environment is an Intel Core i5 with a 4.6 GHz CPU and 8 GB memory laptop. We initially 

considered 20 devices (nodes) constituted into a TMC system as described above, and they are assumed to be 

moving in and out of a 200 m long surface area at different positions. Given the simulation environment, we can 

assign to all nodes the same battery level and enough energy to run the whole experiment as these deplete over 

time. We considered a threshold for the amount of energy that needs to be available on a mobile device before it 

can receive an offloaded task, so that the device can still run its own compulsory activities (the minimal level of 

energy needed for a device to participate in the system). We applied the Random Gauss-Markov (RGM) [3] model 

which is often used in modelling mobility for mobile cloud augmentation. RGM moves a mobile node in time 

intervals, such that, at each time interval, the next location dnext and speed snext are calculated based on its current 

location dpre and speed spre . We have that: 

𝒔𝒏𝒆𝒙𝒕 =  𝜶𝒔𝒑𝒓𝒆 + (𝟏 − 𝜶)𝒔𝒂𝒗𝒈 +  √(𝟏 − 𝜶𝟐)𝒔𝒓𝒂𝒏
𝟐

    and      𝒅𝒏𝒆𝒙𝒕 =  𝜶𝒅𝒑𝒓𝒆 + (𝟏 − 𝜶)𝒅𝒂𝒗𝒈 +  √(𝟏 − 𝜶𝟐)𝒅𝒓𝒂𝒏
𝟐

 

where α is the tuning parameter to vary the randomness. savg, davg represent the mean values, and sran, dran are two 

random variables from a Gaussian distribution. RGM avoids the sudden change of direction issue by letting past 

states influence future states. 

Every node generates its own DAG of maximum 20 tasks independently following a Poisson arrival process.   

Task characteristics (i.e., complexity, data size, etc.) are selected randomly within the range of chosen max values. 

For example, we may vary the task sizes from 0 MFLOP to 60 MFLOP and the input data sizes from 0 to 20MB. 

Other important simulation parameters used for the devices are given in the Table 3. 

Table 3: Simulation Parameters 

Parameters Max Values  

Transmission power  100 MW 

Reception power 25 MW 

CPU processing capacity   1.5 GHz 

Data transmission rate  20 Mbps 

Bandwidth 20 MHz 

Using this mobile agent simulator, we constructed a prototype, while considering the characteristic values of the 

network protocol (BATMAN), to represent all the components of the 3 planes designated in Figure 5. This 

prototype was implemented with over 7000 lines of code in Java. 
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Figure 5 (a) shows a view of the mobile devices (blue dots), their agents moving towards the devices where they 

have been assigned (red stars) and the green arrows shows the link between a device and the agents carrying its 

tasks.  Figure 5 (b) illustrates the variability of the speeds of the devices as they move. Every device runs the 

AH_Algo as it starts the allocation of its tasks. Once this is done, during its movement, it will run the 

Dynamic_Hungarian algorithm in order to manage the few changes in cost. If a device is getting out of reach, it 

will run the Send_over algorithm. To handle cases of packet loss, after a required execution and transfer time, 

supplemented by an average delay rate, if a given agent has not returned to the sender with a result, the MAZ may 

resend an agent with the same information for re-execution especially if the priority of the tasks hosted in it was 

critical. 

 

(a) (b) 

Figure 5: (a) Simulation view of the devices and allocated agents  (b) Variability of the devices’ speeds over 

time 

4.2 Performance Evaluation 

In the simulation with 20 devices, about 300 tasks are generated and encapsulated in agents (see Figure 6 (a)). We 

compare our updated Kuhn Munkres task assignment policy to three other schemes that are also used in these 

scenarios: the Monge Kantarovich Algorithm, the MinMax algorithm and the Random Allocation algorithm. We 

run 50 rounds of these task assignment schemes to obtain the average energy consumed up until the execution of 

all the tasks. The feasible network connectivity among the devices also varies from round to round, which depends 

on the devices’ positions while the users move. We depict the energy consumed of different schemes in Figure 6 

(b). We observe that our proposed scheme (AH_Algo) can save sufficiently more energy compared to other 

schemes. Also, with the AH_Algo, the tasks’ execution is completed on average a few time ticks earlier than with 

the other schemes, considering the constraints depicted in the TMC system, as it stops increasing at time tick 569. 

Furthermore, Figure 8 presents the average load balancing over the 20 devices, each having a number of tasks 

allocated through a given scheme as listed in the table. We note that the AH_Algo is able to equitably manage the 

load of tasks assigned to devices better than other schemes. These points demonstrate the superior performance 
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of our task allocation scheme for a TMC system. 

 

(a)                                                                                   (b) 

Figure 6: (a) Devices and Mobile Agents count     (b) Average energy consumption in the whole system over 

time per allocation scheme 

 

(a) (b) 

Figure 7: (a) Energy consumed with 15 devices  (b) Energy consumed with 20 devices 
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Figure 8: Load Balancing in Task Allocation on the devices 

We equally examined the case of running the AH_Algo when there are more or less devices in the TMC system 

to manage tasks. Figure 7 (a) represents the average energy consumed over time with 15 devices, and Figure 7 (b) 

does same with 20 devices. We observe that the performance of our algorithm will slightly increase with 

increasing number of users even for devices that has a high number of tasks. This can be seen in the fact that it 

takes more time to execute those tasks with less devices though almost the same amount of energy is spent in both 

cases. The reason is that a larger number of devices would enable a device to have more neighbors, and hence a 

device can have more opportunities to offload the task to a suitable device and to execute more tasks parallelly. 

This will decrease the number of idle devices, and hence promote the overall performance. However, the difficulty 

is that when the TMC system expands, it has the tendency to increase the processing time because there are more 

devices to consider for the task assignment. 

5 Conclusion and Limitations 

In this paper, we modeled the tasks allocation problem in TMC system as an energy consumption optimization 

problem, while taking into account task dependency, data transmission and some constraint conditions such as 

and cost. We further solved it using an adapted version of the Kuhn-Munkres (Hungarian) Algorithm to fit in the 

mobile ad hoc cloud networking infrastructure described above. Furthermore, we have considered the 

Dynamic_Allocation algorithm and proposed a Send_Over algorithm that permit to easily manage the change in 

energy cost due to the constant movement of devices. A series of simulation experiments are conducted to evaluate 

the performance of the algorithm and the results obtained are efficient and acceptable compared to what obtains 

in other prominent tasks allocation algorithms. 

6 Future Works  

For the future work, we will test the performance of algorithms with much larger task graphs and devise more 

efficient heuristic algorithms to solve this task scheduling problem. We consider using a lightweight swarm 

intelligence algorithm permitting the agents to learn from the environment and act autonomously.  This may 

equally help to manage many more devices in the TMC system. Also, we consider carrying out a priority-based 

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20

Random 17 11 22 15 26 16 12 19 27 25 10 13 28 12 11 27 15 29 18 28

MinMax 19 18 20 18 18 22 21 18 20 17 20 19 17 20 16 18 17 22 23 21

Monge_K 18 20 19 17 21 19 20 19 19 20 19 18 19 21 22 20 18 20 22 20

AH_Algo 18 19 20 21 20 20 22 21 20 19 18 20 18 19 20 19 23 19 21 18

5% 5% 5% 5% 5% 5% 6% 5% 5% 5% 5% 5% 5% 5% 5% 5% 6% 5% 5% 5%
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scheduling for the tasks in a DAG, test them with existing real life mobility trace. This will offer a better 

representation of the devices. 
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